結果
問題 | No.913 木の燃やし方 |
ユーザー |
|
提出日時 | 2021-11-17 17:19:03 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 1,519 ms / 3,000 ms |
コード長 | 8,172 bytes |
コンパイル時間 | 15,363 ms |
コンパイル使用メモリ | 377,892 KB |
実行使用メモリ | 100,396 KB |
最終ジャッジ日時 | 2024-12-23 18:24:18 |
合計ジャッジ時間 | 60,889 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 34 |
ソースコード
#[allow(unused_imports)]use std::cmp::*;#[allow(unused_imports)]use std::collections::*;use std::io::{Write, BufWriter};// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8macro_rules! input {($($r:tt)*) => {let stdin = std::io::stdin();let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));let mut next = move || -> String{bytes.by_ref().map(|r|r.unwrap() as char).skip_while(|c|c.is_whitespace()).take_while(|c|!c.is_whitespace()).collect()};input_inner!{next, $($r)*}};}macro_rules! input_inner {($next:expr) => {};($next:expr,) => {};($next:expr, $var:ident : $t:tt $($r:tt)*) => {let $var = read_value!($next, $t);input_inner!{$next $($r)*}};}macro_rules! read_value {($next:expr, [ $t:tt ; $len:expr ]) => {(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()};($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));}// Verified by: https://atcoder.jp/contests/joisc2021/submissions/25693167pub trait Action {type T: Clone + Copy; // datatype U: Clone + Copy + PartialEq + Eq; // actionfn update(x: Self::T, a: Self::U) -> Self::T;fn upop(fst: Self::U, snd: Self::U) -> Self::U;fn upe() -> Self::U; // identity for upop}pub struct DualSegTree<R: Action> {n: usize,dat: Vec<R::T>,lazy: Vec<R::U>,}impl<R: Action> DualSegTree<R> {pub fn new(a: &[R::T]) -> Self {let n_ = a.len();let mut n = 1;while n < n_ { n *= 2; } // n is a power of 2DualSegTree {n: n,dat: a.to_vec(),lazy: vec![R::upe(); 2 * n - 1]}}#[inline]fn lazy_evaluate_node(&mut self, k: usize) {if self.lazy[k] == R::upe() { return; }if k >= self.n - 1 {let idx = k + 1 - self.n;self.dat[idx] = R::update(self.dat[idx], self.lazy[k]);}if k < self.n - 1 {self.lazy[2 * k + 1] = R::upop(self.lazy[2 * k + 1], self.lazy[k]);self.lazy[2 * k + 2] = R::upop(self.lazy[2 * k + 2], self.lazy[k]);}self.lazy[k] = R::upe(); // identity for upop}fn update_sub(&mut self, a: usize, b: usize, v: R::U, k: usize, l: usize, r: usize) {self.lazy_evaluate_node(k);// [a,b) and [l,r) intersects?if r <= a || b <= l {return;}if a <= l && r <= b {self.lazy[k] = R::upop(self.lazy[k], v);self.lazy_evaluate_node(k);return;}self.update_sub(a, b, v, 2 * k + 1, l, (l + r) / 2);self.update_sub(a, b, v, 2 * k + 2, (l + r) / 2, r);}/* ary[i] = upop(ary[i], v) for i in [a, b) (half-inclusive) */#[inline]pub fn update(&mut self, a: usize, b: usize, v: R::U) {let n = self.n;self.update_sub(a, b, v, 0, 0, n);}/* l,r are for simplicity */fn update_at_sub(&mut self, a: usize, k: usize, l: usize, r: usize) {self.lazy_evaluate_node(k);// [a,a+1) and [l,r) intersect?if r <= a || a + 1 <= l { return; }if a <= l && r <= a + 1 { return; }self.update_at_sub(a, 2 * k + 1, l, (l + r) / 2);self.update_at_sub(a, 2 * k + 2, (l + r) / 2, r);}/* [a, b) (note: half-inclusive) */#[inline]pub fn query(&mut self, a: usize) -> R::T {let n = self.n;self.update_at_sub(a, 0, 0, n);self.dat[a]}}enum Chmin {}impl Action for Chmin {type T = i64; // datatype U = i64; // action, a |-> x |-> min(x, a)fn update(x: Self::T, a: Self::U) -> Self::T {std::cmp::min(x, a)}fn upop(fst: Self::U, snd: Self::U) -> Self::U {std::cmp::min(fst, snd)}fn upe() -> Self::U { // identity for upop1 << 50}}/** Online monotone minima dp. For example, monge dp can be efficiently computed* by online_dc.* Verified by: https://yukicoder.me/problems/no/705* submission: https://yukicoder.me/submissions/566775*/const INF: i64 = 1 << 60;// Complexity: O(n log m + m) where n = r - l, m = b - a.fn monotone_minima<F>(l: usize, r: usize, a: usize, b: usize,lat: &mut [i64], realizer: &mut [usize],cost_fun: &F)where F: Fn(usize, usize) -> i64 {let n = r - l;let m = b - a;if n == 0 || m == 0 {return;}let mid = (a + b) / 2;let mut mi = (INF, n);for i in l..r {let cost = cost_fun(i, mid);mi = std::cmp::min(mi, (cost, i));}let idx = mi.1;assert!(l <= idx && idx < r);lat[mid] = std::cmp::min(lat[mid], mi.0);realizer[mid] = idx;monotone_minima(l, idx + 1, a, mid, lat, realizer, cost_fun);monotone_minima(idx, r, mid + 1, b, lat, realizer, cost_fun);}trait Bisect<T> {fn lower_bound(&self, val: &T) -> usize;fn upper_bound(&self, val: &T) -> usize;}impl<T: Ord> Bisect<T> for [T] {fn lower_bound(&self, val: &T) -> usize {let mut pass = self.len() + 1;let mut fail = 0;while pass - fail > 1 {let mid = (pass + fail) / 2;if &self[mid - 1] >= val {pass = mid;} else {fail = mid;}}pass - 1}fn upper_bound(&self, val: &T) -> usize {let mut pass = self.len() + 1;let mut fail = 0;while pass - fail > 1 {let mid = (pass + fail) / 2;if &self[mid - 1] > val {pass = mid;} else {fail = mid;}}pass - 1}}trait Change { fn chmax(&mut self, x: Self); fn chmin(&mut self, x: Self); }impl<T: PartialOrd> Change for T {fn chmax(&mut self, x: T) { if *self < x { *self = x; } }fn chmin(&mut self, x: T) { if *self > x { *self = x; } }}fn rec(l: usize, r: usize, a: &[i64], acc: &[i64],cons: &mut Vec<(usize, usize, i64)>) {if l >= r {return;}if l + 1 == r {cons.push((l, r, a[l] + 1));return;}let mid = (l + r) / 2;rec(l, mid, a, acc, cons);rec(mid, r, a, acc, cons);let mut dp = vec![INF; r - mid];let mut realizer = vec![0; r - mid];monotone_minima(0, mid - l, 0, r - mid, &mut dp, &mut realizer, &|i, j| {let ii = i as i64;let jj = (j + mid - l + 1) as i64;ii * ii - acc[l + i] + jj * jj + acc[j + mid + 1] - 2 * ii * jj});for i in 0..r - mid {cons.push((l + realizer[i], mid + 1 + i, dp[i]));}let mut dp = vec![INF; mid - l];let mut realizer = vec![0; mid - l];monotone_minima(0, r - mid, 0, mid - l, &mut dp, &mut realizer, &|j, i| {let ii = i as i64;let jj = (j + mid - l + 1) as i64;ii * ii - acc[l + i] + jj * jj + acc[j + mid + 1] - 2 * ii * jj});for i in 0..mid - l {cons.push((l + i, mid + 1 + realizer[i], dp[i]));}}fn calc(a: &[i64]) -> Vec<i64> {let n = a.len();let mut acc = vec![0; n + 1];for i in 0..n {acc[i + 1] = acc[i] + a[i];}let mut cons = vec![];rec(0, n, &a, &acc, &mut cons);// eprintln!("cons = {:?}", cons);let mut st = DualSegTree::<Chmin>::new(&vec![INF; n]);for (l, r, val) in cons {st.update(l, r, val);}let mut ret = vec![0; n];for i in 0..n {ret[i] = st.query(i);}ret}fn main() {// In order to avoid potential stack overflow, spawn a new thread.let stack_size = 104_857_600; // 100 MBlet thd = std::thread::Builder::new().stack_size(stack_size);thd.spawn(|| solve()).unwrap().join().unwrap();}fn solve() {let out = std::io::stdout();let mut out = BufWriter::new(out.lock());macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););}input! {n: usize,a: [i64; n],}let dp = calc(&a);for i in 0..n {puts!("{}\n", dp[i]);}}