結果

問題 No.913 木の燃やし方
ユーザー koba-e964
提出日時 2021-11-17 17:19:03
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 1,519 ms / 3,000 ms
コード長 8,172 bytes
コンパイル時間 15,363 ms
コンパイル使用メモリ 377,892 KB
実行使用メモリ 100,396 KB
最終ジャッジ日時 2024-12-23 18:24:18
合計ジャッジ時間 60,889 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 34
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
use std::io::{Write, BufWriter};
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes.by_ref().map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr,) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
// Verified by: https://atcoder.jp/contests/joisc2021/submissions/25693167
pub trait Action {
type T: Clone + Copy; // data
type U: Clone + Copy + PartialEq + Eq; // action
fn update(x: Self::T, a: Self::U) -> Self::T;
fn upop(fst: Self::U, snd: Self::U) -> Self::U;
fn upe() -> Self::U; // identity for upop
}
pub struct DualSegTree<R: Action> {
n: usize,
dat: Vec<R::T>,
lazy: Vec<R::U>,
}
impl<R: Action> DualSegTree<R> {
pub fn new(a: &[R::T]) -> Self {
let n_ = a.len();
let mut n = 1;
while n < n_ { n *= 2; } // n is a power of 2
DualSegTree {
n: n,
dat: a.to_vec(),
lazy: vec![R::upe(); 2 * n - 1]
}
}
#[inline]
fn lazy_evaluate_node(&mut self, k: usize) {
if self.lazy[k] == R::upe() { return; }
if k >= self.n - 1 {
let idx = k + 1 - self.n;
self.dat[idx] = R::update(self.dat[idx], self.lazy[k]);
}
if k < self.n - 1 {
self.lazy[2 * k + 1] = R::upop(self.lazy[2 * k + 1], self.lazy[k]);
self.lazy[2 * k + 2] = R::upop(self.lazy[2 * k + 2], self.lazy[k]);
}
self.lazy[k] = R::upe(); // identity for upop
}
fn update_sub(&mut self, a: usize, b: usize, v: R::U, k: usize, l: usize, r: usize) {
self.lazy_evaluate_node(k);
// [a,b) and [l,r) intersects?
if r <= a || b <= l {return;}
if a <= l && r <= b {
self.lazy[k] = R::upop(self.lazy[k], v);
self.lazy_evaluate_node(k);
return;
}
self.update_sub(a, b, v, 2 * k + 1, l, (l + r) / 2);
self.update_sub(a, b, v, 2 * k + 2, (l + r) / 2, r);
}
/* ary[i] = upop(ary[i], v) for i in [a, b) (half-inclusive) */
#[inline]
pub fn update(&mut self, a: usize, b: usize, v: R::U) {
let n = self.n;
self.update_sub(a, b, v, 0, 0, n);
}
/* l,r are for simplicity */
fn update_at_sub(&mut self, a: usize, k: usize, l: usize, r: usize) {
self.lazy_evaluate_node(k);
// [a,a+1) and [l,r) intersect?
if r <= a || a + 1 <= l { return; }
if a <= l && r <= a + 1 { return; }
self.update_at_sub(a, 2 * k + 1, l, (l + r) / 2);
self.update_at_sub(a, 2 * k + 2, (l + r) / 2, r);
}
/* [a, b) (note: half-inclusive) */
#[inline]
pub fn query(&mut self, a: usize) -> R::T {
let n = self.n;
self.update_at_sub(a, 0, 0, n);
self.dat[a]
}
}
enum Chmin {}
impl Action for Chmin {
type T = i64; // data
type U = i64; // action, a |-> x |-> min(x, a)
fn update(x: Self::T, a: Self::U) -> Self::T {
std::cmp::min(x, a)
}
fn upop(fst: Self::U, snd: Self::U) -> Self::U {
std::cmp::min(fst, snd)
}
fn upe() -> Self::U { // identity for upop
1 << 50
}
}
/*
* Online monotone minima dp. For example, monge dp can be efficiently computed
* by online_dc.
* Verified by: https://yukicoder.me/problems/no/705
* submission: https://yukicoder.me/submissions/566775
*/
const INF: i64 = 1 << 60;
// Complexity: O(n log m + m) where n = r - l, m = b - a.
fn monotone_minima<F>(l: usize, r: usize, a: usize, b: usize,
lat: &mut [i64], realizer: &mut [usize],
cost_fun: &F)
where F: Fn(usize, usize) -> i64 {
let n = r - l;
let m = b - a;
if n == 0 || m == 0 {
return;
}
let mid = (a + b) / 2;
let mut mi = (INF, n);
for i in l..r {
let cost = cost_fun(i, mid);
mi = std::cmp::min(mi, (cost, i));
}
let idx = mi.1;
assert!(l <= idx && idx < r);
lat[mid] = std::cmp::min(lat[mid], mi.0);
realizer[mid] = idx;
monotone_minima(l, idx + 1, a, mid, lat, realizer, cost_fun);
monotone_minima(idx, r, mid + 1, b, lat, realizer, cost_fun);
}
trait Bisect<T> {
fn lower_bound(&self, val: &T) -> usize;
fn upper_bound(&self, val: &T) -> usize;
}
impl<T: Ord> Bisect<T> for [T] {
fn lower_bound(&self, val: &T) -> usize {
let mut pass = self.len() + 1;
let mut fail = 0;
while pass - fail > 1 {
let mid = (pass + fail) / 2;
if &self[mid - 1] >= val {
pass = mid;
} else {
fail = mid;
}
}
pass - 1
}
fn upper_bound(&self, val: &T) -> usize {
let mut pass = self.len() + 1;
let mut fail = 0;
while pass - fail > 1 {
let mid = (pass + fail) / 2;
if &self[mid - 1] > val {
pass = mid;
} else {
fail = mid;
}
}
pass - 1
}
}
trait Change { fn chmax(&mut self, x: Self); fn chmin(&mut self, x: Self); }
impl<T: PartialOrd> Change for T {
fn chmax(&mut self, x: T) { if *self < x { *self = x; } }
fn chmin(&mut self, x: T) { if *self > x { *self = x; } }
}
fn rec(l: usize, r: usize, a: &[i64], acc: &[i64],
cons: &mut Vec<(usize, usize, i64)>) {
if l >= r {
return;
}
if l + 1 == r {
cons.push((l, r, a[l] + 1));
return;
}
let mid = (l + r) / 2;
rec(l, mid, a, acc, cons);
rec(mid, r, a, acc, cons);
let mut dp = vec![INF; r - mid];
let mut realizer = vec![0; r - mid];
monotone_minima(0, mid - l, 0, r - mid, &mut dp, &mut realizer, &|i, j| {
let ii = i as i64;
let jj = (j + mid - l + 1) as i64;
ii * ii - acc[l + i] + jj * jj + acc[j + mid + 1] - 2 * ii * jj
});
for i in 0..r - mid {
cons.push((l + realizer[i], mid + 1 + i, dp[i]));
}
let mut dp = vec![INF; mid - l];
let mut realizer = vec![0; mid - l];
monotone_minima(0, r - mid, 0, mid - l, &mut dp, &mut realizer, &|j, i| {
let ii = i as i64;
let jj = (j + mid - l + 1) as i64;
ii * ii - acc[l + i] + jj * jj + acc[j + mid + 1] - 2 * ii * jj
});
for i in 0..mid - l {
cons.push((l + i, mid + 1 + realizer[i], dp[i]));
}
}
fn calc(a: &[i64]) -> Vec<i64> {
let n = a.len();
let mut acc = vec![0; n + 1];
for i in 0..n {
acc[i + 1] = acc[i] + a[i];
}
let mut cons = vec![];
rec(0, n, &a, &acc, &mut cons);
// eprintln!("cons = {:?}", cons);
let mut st = DualSegTree::<Chmin>::new(&vec![INF; n]);
for (l, r, val) in cons {
st.update(l, r, val);
}
let mut ret = vec![0; n];
for i in 0..n {
ret[i] = st.query(i);
}
ret
}
fn main() {
// In order to avoid potential stack overflow, spawn a new thread.
let stack_size = 104_857_600; // 100 MB
let thd = std::thread::Builder::new().stack_size(stack_size);
thd.spawn(|| solve()).unwrap().join().unwrap();
}
fn solve() {
let out = std::io::stdout();
let mut out = BufWriter::new(out.lock());
macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););}
input! {
n: usize,
a: [i64; n],
}
let dp = calc(&a);
for i in 0..n {
puts!("{}\n", dp[i]);
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0