結果

問題 No.749 クエリ全部盛り
ユーザー jelljell
提出日時 2021-11-17 23:29:41
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 626 ms / 3,000 ms
コード長 38,525 bytes
コンパイル時間 4,583 ms
コンパイル使用メモリ 278,756 KB
実行使用メモリ 117,888 KB
最終ジャッジ日時 2024-06-06 14:42:30
合計ジャッジ時間 8,742 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 1 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 1 ms
5,376 KB
testcase_05 AC 3 ms
5,376 KB
testcase_06 AC 3 ms
5,376 KB
testcase_07 AC 4 ms
5,376 KB
testcase_08 AC 4 ms
5,376 KB
testcase_09 AC 3 ms
5,376 KB
testcase_10 AC 32 ms
5,376 KB
testcase_11 AC 31 ms
5,376 KB
testcase_12 AC 30 ms
5,376 KB
testcase_13 AC 30 ms
5,376 KB
testcase_14 AC 32 ms
5,376 KB
testcase_15 AC 626 ms
117,808 KB
testcase_16 AC 603 ms
117,888 KB
testcase_17 AC 610 ms
117,888 KB
testcase_18 AC 612 ms
117,888 KB
testcase_19 AC 611 ms
117,760 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "other/ms.cc"
// #undef _GLIBCXX_DEBUG
// #define NDEBUG
#include <bits/extc++.h>

// #include "lib/alias"
// #include "lib/cxx20"
// #include "lib/direct"
// #include "lib/opt"
// #include "lib/sys"
// #include "lib/utils"

// signed main() {
//   using namespace workspace;

//   io_setup(15);

//   /* given
//     case_info.read();  //*/

//   /* unspecified
//     case_info.total = -1;  //*/

//   return case_info.iterate();
// }

#line 2 "Library/src/algebra/linear/matrix.hpp"

/**
 * @file matrix.hpp
 * @brief Matrix
 * @date 2021-02-15
 *
 *
 */

#line 13 "Library/src/algebra/linear/matrix.hpp"

namespace workspace {

/**
 * @brief Fixed size matrix.
 *
 * @tparam _Scalar
 * @tparam _Rows Number of rows
 * @tparam _Cols Number of columns
 */
template <class _Scalar, std::size_t _Rows = 0, std::size_t _Cols = _Rows>
class matrix {
 public:
  _Scalar __data[_Rows][_Cols] = {};

  using value_type = _Scalar;
  using size_type = std::size_t;

  constexpr static matrix eye() {
    static_assert(_Rows == _Cols);

    matrix __e;
    for (size_type __d = 0; __d != _Rows; ++__d) __e.__data[__d][__d] = 1;
    return __e;
  }

  constexpr operator decltype((__data))() { return __data; }
  constexpr operator decltype(std::declval<const matrix>().__data)
      const&() const {
    return __data;
  }

  constexpr auto begin() { return __data; }
  constexpr auto begin() const { return __data; }

  constexpr auto end() { return __data + _Rows; }
  constexpr auto end() const { return __data + _Rows; }

  constexpr size_type rows() const { return _Rows; }

  constexpr size_type cols() const { return _Cols; }

  constexpr auto transpose() const {
    matrix<_Scalar, _Cols, _Rows> __t;

    for (size_type __r = 0; __r != _Rows; ++__r)
      for (size_type __c = 0; __c != _Cols; ++__c)
        __t.__data[__c][__r] = __data[__r][__c];

    return __t;
  }

  constexpr matrix operator+() const { return *this; }

  constexpr matrix operator-() const {
    matrix __cp = *this;

    for (auto& __v : __cp.__data)
      for (auto& __e : __v) __e = -__e;

    return __cp;
  }

  template <class _Matrix> constexpr matrix& operator+=(const _Matrix& __x) {
    auto __m = std::min(_Rows, __x.rows());
    auto __n = std::min(_Cols, __x.cols());

    for (size_type __r = 0; __r != __m; ++__r)
      for (size_type __c = 0; __c != __n; ++__c)
        __data[__r][__c] += __x[__r][__c];

    return *this;
  }

  template <class _Matrix>
  constexpr matrix operator+(const _Matrix& __x) const {
    return matrix(*this) += __x;
  }

  template <class _Matrix> constexpr matrix& operator-=(const _Matrix& __x) {
    auto __m = std::min(_Rows, __x.rows());
    auto __n = std::min(_Cols, __x.cols());

    for (size_type __r = 0; __r != __m; ++__r)
      for (size_type __c = 0; __c != __n; ++__c)
        __data[__r][__c] -= __x[__r][__c];

    return *this;
  }

  template <class _Matrix>
  constexpr matrix operator-(const _Matrix& __x) const {
    return matrix(*this) -= __x;
  }

  template <class _Scalar2>
  constexpr matrix& operator*=(const matrix<_Scalar2, _Cols, _Cols>& __x) {
    if (this == &__x) return operator=(operator*(__x));

    for (auto& __r : __data) {
      _Scalar __tmp[_Cols] = {};

      auto __v = *__x.__data;
      for (auto& __w : __tmp) {
        auto __i = __v++;
        for (const auto& __e : __r) __w += __e * *__i, __i += _Cols;
      }

      auto __w = __tmp;
      for (auto& __e : __r) __e = std::move(*__w++);
    }

    return *this;
  }

  template <class _Scalar2, size_type _Cols2>
  constexpr matrix<_Scalar, _Rows, _Cols2> operator*(
      const matrix<_Scalar2, _Cols, _Cols2>& __x) const {
    matrix<_Scalar, _Rows, _Cols2> __m;

    auto __w = *__m.__data;
    for (const auto& __r : __data)
      for (auto __v = *__x.__data, __end = __v + _Cols2; __v != __end; ++__w) {
        auto __i = __v++;
        for (const auto& __e : __r) *__w += __e * *__i, __i += _Cols2;
      }

    return __m;
  }

  template <class _Matrix>
  constexpr
      typename std::enable_if<!std::is_convertible<_Matrix, value_type>::value,
                              matrix<_Scalar>>::type
      operator*(const _Matrix& __x) const {
    assert(_Cols <= __x.rows());

    matrix<_Scalar> __m(_Rows, __x.cols());

    for (size_type __r = 0; __r != _Rows; ++__r)
      for (size_type __i = 0; __i != __x.cols(); ++__i)
        for (size_type __c = 0; __c != _Cols; ++__c)
          __m[__r][__i] += __data[__r][__c] * __x[__c][__i];

    return __m;
  }

  constexpr matrix& operator*=(const value_type& __x) {
    for (auto& __v : __data)
      for (auto& __e : __v) __e *= __x;

    return *this;
  }

  constexpr matrix operator*(const value_type& __x) const {
    return matrix(*this) *= __x;
  }

  constexpr matrix& operator/=(const value_type& __x) {
    assert(__x != value_type(0));

    for (auto& __v : __data)
      for (auto& __e : __v) __e /= __x;

    return *this;
  }

  constexpr matrix operator/(const value_type& __x) const {
    return matrix(*this) /= __x;
  }

  template <class _Int> constexpr matrix pow(_Int __e) const {
    static_assert(_Rows == _Cols);
    assert(0 <= __e);

    matrix __m = eye();
    for (matrix __cp = *this; __e; __cp *= __cp, __e >>= 1)
      if (__e & 1) __m *= __cp;

    return __m;
  }

  template <class _Os>
  constexpr friend _Os& operator<<(_Os& __os, const matrix& __x) {
    for (auto __i = __x.begin(); __i != __x.end(); ++__i, __os << '\n')
      for (size_type __c = 0; __c != _Cols; ++__c)
        __c ? void(__os << ' ') : (void)0, __os << *(*__i + __c);

    return __os;
  }
};  // namespace workspace

/**
 * @brief Dynamic matrix.
 *
 * @tparam _Scalar
 * @tparam _Rows Number of rows
 * @tparam _Cols Number of columns
 */
template <class _Scalar>
class matrix<_Scalar, 0, 0> : public std::valarray<std::valarray<_Scalar>> {
  using base = std::valarray<std::valarray<_Scalar>>;
  using row_type = typename base::value_type;

 public:
  using value_type = _Scalar;
  using size_type = std::size_t;

  using base::operator[];

  static matrix eye(size_type __n) {
    matrix __e(__n, __n);
    for (size_type __d = 0; __d != __n; ++__d) __e[__d][__d] = 1;
    return __e;
  }

  matrix() = default;

  matrix(size_type __n) : matrix(__n, __n) {}

  matrix(size_type __m, size_type __n) : base(row_type(__n), __m) {}

  template <class _Tp, typename = typename std::enable_if<
                           std::is_constructible<base, _Tp>::value &&
                           !std::is_constructible<size_type, _Tp>::value>::type>
  matrix(_Tp&& __x) : base(__x) {}

  matrix(std::initializer_list<row_type> __x) : base(__x) {}

  size_type rows() const { return base::size(); }

  size_type cols() const { return rows() ? operator[](0).size() : 0; }

  matrix transpose() const {
    matrix __t(cols(), rows());

    for (size_type __r = 0; __r != rows(); ++__r)
      for (size_type __c = 0; __c != cols(); ++__c)
        __t[__c][__r] = operator[](__r)[__c];

    return __t;
  }

  void resize(size_type __m, size_type __n) {
    matrix __t(__m, __n);

    if (rows() < __m) __m = rows();
    if (cols() < __n) __n = cols();

    for (size_type __r = 0; __r != __m; ++__r)
      for (size_type __c = 0; __c != __n; ++__c)
        __t[__r][__c] = std::move(operator[](__r)[__c]);

    base::swap(__t);
  }

  // binary operators {{

  template <class _Matrix, typename = void>
  struct is_valarray_based : std::false_type {};

  template <class _Matrix>
  struct is_valarray_based<
      _Matrix,
      typename std::enable_if<std::is_same<
          row_type, typename std::decay<decltype(
                        std::declval<_Matrix>()[0])>::type>::value>::type>
      : std::true_type {};

  template <class _Matrix>
  typename std::enable_if<!std::is_convertible<_Matrix, value_type>::value,
                          matrix&>::type
  operator*=(_Matrix&& __x) {
    return operator=(operator*(std::forward<_Matrix>(__x)));
  }

  template <class _Matrix>
  typename std::enable_if<!std::is_convertible<_Matrix, value_type>::value,
                          matrix>::type
  operator*(const _Matrix& __x) const {
    assert(cols() <= __x.rows());

    matrix __m(rows(), __x.cols());

    if constexpr (is_valarray_based<_Matrix>::value)
      for (size_type __r = 0; __r != rows(); ++__r)
        for (size_type __c = 0; __c != cols(); ++__c)
          __m[__r] += operator[](__r)[__c] * __x[__c];

    else
      for (size_type __r = 0; __r != rows(); ++__r)
        for (size_type __c = 0; __c != cols(); ++__c)
          for (size_type __i = 0; __i != __x.cols(); ++__i)
            __m[__r][__i] += operator[](__r)[__c] * __x[__c][__i];

    return __m;
  }

  matrix& operator*=(const value_type& __x) {
    for (size_type __r = 0; __r != rows(); ++__r)
      operator[](__r).operator*=(__x);

    return *this;
  }

  matrix operator*(const value_type& __x) const { return matrix(*this) *= __x; }

  friend matrix operator*(const value_type& __x, matrix __i) {
    for (size_type __r = 0; __r != __i.rows(); ++__r)
      __i.operator[](__r) = __x * __i.operator[](__r);

    return __i;
  }

  matrix& operator/=(const value_type& __x) {
    assert(__x != value_type(0));

    for (size_type __r = 0; __r != rows(); ++__r)
      operator[](__r).operator/=(__x);

    return *this;
  }

  matrix operator/(const value_type& __x) const { return matrix(*this) /= __x; }

  // }} binary operators

  template <class _Int> matrix pow(_Int __e) const {
    assert(0 <= __e);

    matrix __m = eye(rows());
    for (matrix __cp = *this; __e; __cp *= __cp, __e >>= 1)
      if (__e & 1) __m *= __cp;

    return __m;
  }

  // template <class _Is> friend _Is& operator>>(_Is& __is, matrix& __x) {
  //   for (size_type __r = 0; __r != __x.rows(); ++__r)
  //     for (size_type __c = 0; __c != __x.cols(); ++__c)
  //       __is >> __x.operator[](__r).operator[](__c);

  //   return __is;
  // }

  template <class _Os> friend _Os& operator<<(_Os& __os, const matrix& __x) {
    for (size_type __r = 0; __r != __x.rows(); ++__r, __os << '\n')
      for (size_type __c = 0; __c != __x.cols(); ++__c)
        __c ? void(__os << ' ') : (void)0,
            __os << __x.operator[](__r).operator[](__c);

    return __os;
  }
};

}  // namespace workspace
#line 2 "Library/src/data_structure/segment_tree/basic.hpp"

/**
 * @file basic.hpp
 * @brief Segment Tree
 */

#line 10 "Library/src/data_structure/segment_tree/basic.hpp"

#if __cplusplus >= 201703L
#include <optional>
#endif

#line 2 "Library/src/algebra/system/monoid.hpp"

/*
 * @file monoid.hpp
 * @brief Monoid
 */

#line 9 "Library/src/algebra/system/monoid.hpp"

namespace workspace {

template <class T, class E = T> struct min_monoid {
  using value_type = T;
  static T min, max;
  T value;
  min_monoid() : value(max) {}
  min_monoid(const T &value) : value(value) {}
  operator T() const { return value; }
  min_monoid operator+(const min_monoid &rhs) const {
    return value < rhs.value ? *this : rhs;
  }
  min_monoid operator*(const E &rhs) const;
};

template <class T, class E>
T min_monoid<T, E>::min = std::numeric_limits<T>::min() / 2;
template <class T, class E>
T min_monoid<T, E>::max = std::numeric_limits<T>::max() / 2;

template <class T, class E = T> struct max_monoid : min_monoid<T, E> {
  using base = min_monoid<T, E>;
  using base::min_monoid;
  max_monoid() : base(base::min) {}
  max_monoid operator+(const max_monoid &rhs) const {
    return !(base::value < rhs.value) ? *this : rhs;
  }
  max_monoid operator*(const E &rhs) const;
};

}  // namespace workspace
#line 16 "Library/src/data_structure/segment_tree/basic.hpp"

namespace workspace {

/**
 * @tparam Monoid `operator+`, `operator=`
 * @tparam Container_tmpl `operator[]`, `size_type`
 */
template <class Monoid, class Endomorphism = void,
          template <class...> class Container_tmpl = std::vector>
class segment_tree {
  static_assert(std::is_assignable<Monoid&, decltype(std::declval<Monoid>() +
                                              std::declval<Monoid>())>::value,
                "\'Monoid\' has no proper binary \'operator+\'.");

  constexpr static bool __support_lazy = !std::is_void<Endomorphism>::value;

#if __cplusplus < 201703L
  struct node_base {
    node_base() = default;
    node_base(Monoid const &__x) : __v(__x) {}
    operator bool() const { return __f; }
    void operator=(Monoid const &__x) {
      __v = __x;
      __f = true;
    }
    Monoid &operator*() { return __v; }
    Monoid const &operator*() const { return __v; }
    void reset() { __f = false; }

   private:
    Monoid __v{};
    bool __f{true};
  };
#else
  struct node_base : std::optional<Monoid> {
    using std::optional<Monoid>::operator=;
    node_base() : std::optional<Monoid>(Monoid{}) {}
  };
#endif

  struct node_lazy : node_base {
    using node_base::operator=;
    std::optional<Endomorphism> __z;
  };

  using node =
      typename std::conditional<__support_lazy, node_lazy, node_base>::type;

  using container_type = Container_tmpl<node>;

 public:
  using size_type = typename container_type::size_type;

  class iterator {
    segment_tree *__p;
    size_type __i;

   public:
    using difference_type = typename std::make_signed<size_type>::type;
    using value_type = Monoid;
    using reference = Monoid &;
    using pointer = iterator;
    using iterator_category = std::random_access_iterator_tag;

    /**
     * @brief Construct a new iterator object
     *
     */
    iterator() = default;

    /**
     * @brief Construct a new iterator object
     *
     * @param __p Pointer to a segment tree object
     * @param __i Index
     */
    iterator(segment_tree *__p, size_type __i) : __p(__p), __i(__i) {}

    bool operator==(iterator const &rhs) const {
      return __p == rhs.__p && __i == rhs.__i;
    }
    bool operator!=(iterator const &rhs) const { return !operator==(rhs); }

    bool operator<(iterator const &rhs) const { return __i < rhs.__i; }
    bool operator>(iterator const &rhs) const { return __i > rhs.__i; }
    bool operator<=(iterator const &rhs) const { return __i <= rhs.__i; }
    bool operator>=(iterator const &rhs) const { return __i >= rhs.__i; }

    iterator &operator++() { return ++__i, *this; }
    iterator &operator--() { return --__i, *this; }

    difference_type operator-(iterator const &rhs) const {
      return __i - rhs.__i;
    }

    /**
     * @brief
     *
     * @return reference
     */
    reference operator*() const { return __p->operator[](__i); }
  };

  using value_type = typename iterator::value_type;
  using reference = typename iterator::reference;

  iterator begin() { return {this, 0}; }
  iterator end() { return {this, size_orig}; }

  auto rbegin() { return std::make_reverse_iterator(end()); }
  auto rend() { return std::make_reverse_iterator(begin()); }

 protected:
  size_type size_orig, height, size_ext;
  container_type data;

  node &pull(size_type __i) noexcept {
    if (!data[__i]) data[__i] = *pull(__i << 1) + *pull(__i << 1 | 1);
    return data[__i];
  }

  void push(size_type __i) {
    if (auto &__lz = data[__i].__z) {
      apply(data[__i << 1], *__lz);
      apply(data[__i << 1 | 1], *__lz);
      __lz.reset();
    }
  }

  void sync(size_type __i) {
    if (!data[__i])
      data[__i] = *pull(__i << 1) + *pull(__i << 1 | 1);
    else if (data[__i].__z) {
      apply(data[__i << 1], *data[__i].__z);
      apply(data[__i << 1 | 1], *data[__i].__z);
      data[__i].__z.reset();
    }
  }

  template <class _End = Endomorphism>
  void apply(node &__nd, _End const &endo) {
    *__nd = *__nd * endo;
    __nd.__z = __nd.__z ? *__nd.__z * endo : endo;
  }

  // template <class _End = Endomorphism>
  // void apply_top(size_t __i, _End const &endo) {
  //   auto &__nd = pull(__i);
  //   *__nd = *__nd * endo;
  //   __nd.__z = __nd.__z ? *__nd.__z * endo : endo;
  // }

  template <class Pred>
  constexpr decltype(std::declval<Pred>()(Monoid{})) pass_args(
      Pred pred, Monoid const &_1, [[maybe_unused]] size_type _2) {
    return pred(_1);
  }

  template <class Pred>
  constexpr decltype(std::declval<Pred>()(Monoid{}, size_type{})) pass_args(
      Pred pred, Monoid const &_1, size_type _2) {
    return pred(_1, _2);
  }

  template <class Pred>
  size_type left_partition_subtree(size_type __i, Monoid mono, size_type step,
                                   Pred pred) {
    assert(__i);
    while (__i < size_ext) {
      if constexpr (__support_lazy) push(__i);
      const Monoid tmp = *pull((__i <<= 1) | 1) + mono;
      if (pass_args(pred, tmp, ((__i | 1) << --step) ^ size_ext))
        mono = tmp;
      else
        ++__i;
    }
    return ++__i -= size_ext;
  }

  template <class Pred>
  size_type right_partition_subtree(size_type __i, Monoid mono, size_type step,
                                    Pred pred) {
    assert(__i);
    while (__i < size_ext) {
      if constexpr (__support_lazy) push(__i);
      const Monoid tmp = mono + *pull(__i <<= 1);
      if (pass_args(pred, tmp, ((__i | 1) << --step) ^ size_ext))
        ++__i, mono = tmp;
    }
    return (__i -= size_ext) < size_orig ? __i : size_orig;
  }

 public:
  /**
   * @brief Construct a new segment tree object
   *
   * @param __n Number of elements.
   */
  segment_tree(size_type __n = 0)
      : size_orig{__n},
        height(__n > 1 ? 64 - __builtin_clzll(__n - 1) : 0),
        size_ext{size_type{1} << height} {
    if constexpr (std::is_constructible<container_type, size_t>::value)
      data = container_type(size_ext << 1);
    data[0].reset();
  }

  /**
   * @brief Construct a new segment tree object
   *
   * @param __n Number of elements.
   * @param init
   */
  segment_tree(size_type __n, Monoid const &init) : segment_tree(__n) {
    for (auto i = begin(); i != end(); ++i) *i = init;
  }

  /**
   * @brief Construct a new segment tree object
   *
   * @tparam Tp
   * @param __n Number of elements.
   * @param init
   */
  template <class Tp, typename std::enable_if<std::is_convertible<
                          Tp, Monoid>::value>::type * = nullptr>
  segment_tree(size_type __n, Tp &&init) : segment_tree(__n) {
    for (auto i = begin(); i != end(); ++i) *i = init;
  }

  /**
   * @brief Construct a new segment tree object
   *
   * @tparam Iterator
   * @param __first
   * @param __last
   */
  template <class Iterator,
            typename std::enable_if<std::is_convertible<
                typename std::iterator_traits<Iterator>::value_type,
                Monoid>::value> * = nullptr>
  segment_tree(Iterator __first, Iterator __last)
      : segment_tree(std::distance(__first, __last)) {
    for (auto i = begin(); __first != __last; ++i, ++__first) *i = *__first;
  }

  operator Container_tmpl<value_type>() const {
    Container_tmpl<value_type> __c(size());
    for (size_type __i = 0; __i != size(); ++__i)
      __c[__i] = *data[__i | size_ext];
    return __c;
  }

  /**
   * @return Number of elements.
   */
  size_type size() const { return size_orig; }

  /**
   * @return Whether %segment_tree is empty.
   */
  bool empty() const { return !size(); }

  /**
   * @param __i Index of the element
   * @return Reference to the element.
   */
  reference operator[](size_type __i) {
    assert(__i < size_orig);
    reference __ref = *data[__i |= size_ext];
    if constexpr (__support_lazy) {
      for (size_t __h{height}; __h; --__h) {
        push(__i >> __h);
        data[__i >> __h].reset();
      }
    } else {
      while (data[__i >>= 1]) data[__i].reset();
    }
    return __ref;
  }

  /**
   * @param first Left end, inclusive
   * @param last Right end, exclusive
   * @return Sum of elements in the interval.
   */
  value_type fold(size_type first, size_type last) {
    assert(last <= size_orig);
    if (!(first < last)) return {};
    first += size_ext, last += size_ext;
    value_type left{}, right{};
    for (size_t l = first, r = last--; l != r; l >>= 1, r >>= 1) {
      if (l & 1) left = left + *pull(l++);
      if (r & 1) right = *pull(--r) + right;
      if constexpr (__support_lazy) {
        if (data[first >>= 1].__z) left = left * *data[first].__z;
        if (data[last >>= 1].__z) right = right * *data[last].__z;
      }
    }
    if constexpr (__support_lazy) {
      while (first >>= 1, last >>= 1) {
        if (data[first].__z) left = left * *data[first].__z;
        if (data[last].__z) right = right * *data[last].__z;
      }
    }

    // if (first >= last) return Monoid{};
    // first += size_ext, last += size_ext - 1;
    // Monoid left{}, right{};
    // for (size_t l = first, r = last + 1; last; l >>= 1, r >>= 1) {
    //   if (l < r) {
    //     if (l & 1) left = left + data[l++];
    //     if (r & 1) right = data[--r] + right;
    //   }
    //   if (first >>= 1, last >>= 1) {
    //     left = left * lazy[first];
    //     right = right * lazy[last];
    //   }
    // }
    // return left + right;

    return left + right;
  }

  /**
   * @return The whole sum.
   */
  value_type fold() { return fold(0, size_orig); }

  template <class _End = Endomorphism>
  void update(size_type first, size_type last, _End const &endo) {
    static_assert(__support_lazy);

    assert(last <= size_orig);
    if (!(first < last)) return;
    first += size_ext, last += size_ext;

    --last;
    for (auto i = height; i; --i) push(first >> i), push(last >> i);
    ++last;

    for (auto l = first, r = last; l < r; l >>= 1, r >>= 1) {
      if (l & 1) apply(pull(l++), endo);
      if (r & 1) apply(pull(--r), endo);
    }

    for (first >>= __builtin_ffs(first); data[first]; first >>= 1)
      data[first].reset();

    for (last >>= __builtin_ffs(last); data[last]; last >>= 1)
      data[last].reset();
  }

  /**
   * @brief Binary search for the partition point.
   * @param right Right fixed end of the interval, exclusive
   * @param pred Predicate in the form of either 'bool(Monoid)' or 'bool(Monoid,
   * size_type)'
   * @return Left end of the extremal interval satisfying the condition,
   * inclusive.
   */
  template <class Pred> size_type left_partition(size_type right, Pred pred) {
    assert(right <= size_orig);
    right += size_ext;

    if constexpr (__support_lazy)
      for (size_t i{height}; i; --i) push(right >> i);

    Monoid mono{};
    for (size_type left{size_ext}, step{}; left != right;
         left >>= 1, right >>= 1, ++step) {
      if ((left & 1) != (right & 1)) {
        Monoid tmp = *pull(--right) + mono;
        if (!pass_args(pred, tmp, (right << step) ^ size_ext))
          return left_partition_subtree(right, mono, step, pred);
        mono = tmp;
      }
    }
    return 0;
  }

  /**
   * @brief Binary search for the partition point.
   * @param left Left fixed end of the interval, inclusive
   * @param pred Predicate in the form of either 'bool(Monoid)' or 'bool(Monoid,
   * size_type)'
   * @return Right end of the extremal interval satisfying the condition,
   * exclusive.
   */
  template <class Pred> size_type right_partition(size_type left, Pred pred) {
    assert(left <= size_orig);
    left += size_ext;

    if constexpr (__support_lazy)
      for (size_t i{height}; i; --i) push(left >> i);

    Monoid mono{};
    for (size_type right{size_ext << 1}, step{}; left != right;
         left >>= 1, right >>= 1, ++step) {
      if ((left & 1) != (right & 1)) {
        Monoid tmp = mono + *pull(left);
        if (!pass_args(pred, tmp, ((left + 1) << step) ^ size_ext))
          return right_partition_subtree(left, mono, step, pred);
        mono = tmp;
        ++left;
      }
    }
    return size_orig;
  }
};

}  // namespace workspace
#line 2 "Library/src/modular/modint.hpp"

/**
 * @file modint.hpp
 *
 * @brief Modular Arithmetic
 */

#line 12 "Library/src/modular/modint.hpp"

#line 2 "Library/src/utils/sfinae.hpp"

/**
 * @file sfinae.hpp
 * @brief SFINAE
 */

#line 10 "Library/src/utils/sfinae.hpp"
#include <type_traits>

#ifndef __INT128_DEFINED__

#ifdef __SIZEOF_INT128__
#define __INT128_DEFINED__ 1
#else
#define __INT128_DEFINED__ 0
#endif

#endif

namespace std {

#if __INT128_DEFINED__

template <> struct make_signed<__uint128_t> { using type = __int128_t; };
template <> struct make_signed<__int128_t> { using type = __int128_t; };

template <> struct make_unsigned<__uint128_t> { using type = __uint128_t; };
template <> struct make_unsigned<__int128_t> { using type = __uint128_t; };

#endif

}  // namespace std

namespace workspace {

template <class Tp, class... Args> struct variadic_front { using type = Tp; };

template <class... Args> struct variadic_back;

template <class Tp> struct variadic_back<Tp> { using type = Tp; };

template <class Tp, class... Args> struct variadic_back<Tp, Args...> {
  using type = typename variadic_back<Args...>::type;
};

template <class type, template <class> class trait>
using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;

template <class Container>
using element_type = typename std::decay<decltype(
    *std::begin(std::declval<Container&>()))>::type;

template <class T, class = std::nullptr_t>
struct has_begin : std::false_type {};

template <class T>
struct has_begin<T, decltype(std::begin(std::declval<T>()), nullptr)>
    : std::true_type {};

template <class T, class = int> struct mapped_of {
  using type = element_type<T>;
};
template <class T>
struct mapped_of<T,
                 typename std::pair<int, typename T::mapped_type>::first_type> {
  using type = typename T::mapped_type;
};
template <class T> using mapped_type = typename mapped_of<T>::type;

template <class T, class = void> struct is_integral_ext : std::false_type {};
template <class T>
struct is_integral_ext<
    T, typename std::enable_if<std::is_integral<T>::value>::type>
    : std::true_type {};

#if __INT128_DEFINED__

template <> struct is_integral_ext<__int128_t> : std::true_type {};
template <> struct is_integral_ext<__uint128_t> : std::true_type {};

#endif

#if __cplusplus >= 201402

template <class T>
constexpr static bool is_integral_ext_v = is_integral_ext<T>::value;

#endif

template <typename T, typename = void> struct multiplicable_uint {
  using type = uint_least32_t;
};
template <typename T>
struct multiplicable_uint<
    T, typename std::enable_if<(2 < sizeof(T)) &&
                               (!__INT128_DEFINED__ || sizeof(T) <= 4)>::type> {
  using type = uint_least64_t;
};

#if __INT128_DEFINED__

template <typename T>
struct multiplicable_uint<T, typename std::enable_if<(4 < sizeof(T))>::type> {
  using type = __uint128_t;
};

#endif

template <typename T> struct multiplicable_int {
  using type =
      typename std::make_signed<typename multiplicable_uint<T>::type>::type;
};

}  // namespace workspace
#line 14 "Library/src/modular/modint.hpp"

namespace workspace {

namespace internal {

/**
 * @brief Base of modular arithmetic.
 *
 * @tparam Mod identifier, which represents modulus if positive
 * @tparam Storage Reserved size for inverse calculation
 */
template <auto Mod, unsigned Storage> struct modint_base {
  static_assert(is_integral_ext<decltype(Mod)>::value,
                "Mod must be integral type.");

  using mod_type = typename std::make_signed<typename std::conditional<
      0 < Mod, typename std::add_const<decltype(Mod)>::type,
      decltype(Mod)>::type>::type;

  using value_type = typename std::decay<mod_type>::type;

  using mul_type = typename multiplicable_uint<value_type>::type;

  static mod_type mod;

  static value_type storage;

  constexpr static void reserve(unsigned __n) noexcept { storage = __n; }

 protected:
  value_type value = 0;

 public:
  constexpr modint_base() noexcept = default;

  template <class int_type,
            typename std::enable_if<is_integral_ext<int_type>::value>::type * =
                nullptr>
  constexpr modint_base(int_type n) noexcept
      : value((n %= mod) < 0 ? n += mod : n) {}

  constexpr modint_base(bool n) noexcept : value(n) {}

  constexpr operator value_type() const noexcept { return value; }

  constexpr static modint_base one() noexcept { return 1; }

  // unary operators {{
  constexpr modint_base operator++(int) noexcept {
    modint_base __t{*this};
    operator++();
    return __t;
  }

  constexpr modint_base operator--(int) noexcept {
    modint_base __t{*this};
    operator--();
    return __t;
  }

  constexpr modint_base &operator++() noexcept {
    if (++value == mod) value = 0;
    return *this;
  }

  constexpr modint_base &operator--() noexcept {
    if (!value) value = mod;
    --value;
    return *this;
  }

  constexpr modint_base operator-() const noexcept {
    modint_base __t;
    __t.value = value ? mod - value : 0;
    return __t;
  }

  // }} unary operators

  // operator+= {{

  constexpr modint_base &operator+=(modint_base const &rhs) noexcept {
    if ((value += rhs.value) >= mod) value -= mod;
    return *this;
  }

  template <class int_type>
  constexpr typename std::enable_if<is_integral_ext<int_type>::value,
                                    modint_base>::type &
  operator+=(int_type const &rhs) noexcept {
    if (((value += rhs) %= mod) < 0) value += mod;
    return *this;
  }

  // }} operator+=

  // operator+ {{

  template <class int_type>
  constexpr typename std::enable_if<is_integral_ext<int_type>::value,
                                    modint_base>::type
  operator+(int_type const &rhs) const noexcept {
    return modint_base{*this} += rhs;
  }

  constexpr modint_base operator+(modint_base rhs) const noexcept {
    return rhs += *this;
  }

  template <class int_type>
  constexpr friend typename std::enable_if<is_integral_ext<int_type>::value,
                                           modint_base>::type
  operator+(int_type const &lhs, modint_base rhs) noexcept {
    return rhs += lhs;
  }

  // }} operator+

  // operator-= {{

  constexpr modint_base &operator-=(modint_base const &rhs) noexcept {
    if ((value -= rhs.value) < 0) value += mod;
    return *this;
  }

  template <class int_type>
  constexpr typename std::enable_if<is_integral_ext<int_type>::value,
                                    modint_base>::type &
  operator-=(int_type rhs) noexcept {
    if (((value -= rhs) %= mod) < 0) value += mod;
    return *this;
  }

  // }} operator-=

  // operator- {{

  template <class int_type>
  constexpr typename std::enable_if<is_integral_ext<int_type>::value,
                                    modint_base>::type
  operator-(int_type const &rhs) const noexcept {
    return modint_base{*this} -= rhs;
  }

  constexpr modint_base operator-(modint_base const &rhs) const noexcept {
    modint_base __t;
    if (((__t.value = value) -= rhs.value) < 0) __t.value += mod;
    return __t;
  }

  template <class int_type>
  constexpr friend typename std::enable_if<is_integral_ext<int_type>::value,
                                           modint_base>::type
  operator-(int_type lhs, modint_base const &rhs) noexcept {
    if (((lhs -= rhs.value) %= mod) < 0) lhs += mod;
    modint_base __t;
    __t.value = lhs;
    return __t;
  }

  // }} operator-

  // operator*= {{

  constexpr modint_base &operator*=(modint_base const &rhs) noexcept {
    if (!rhs.value)
      value = 0;
    else if (value) {
      mul_type __r(value);
      value = static_cast<value_type &&>((__r *= rhs.value) %= mod);
    }
    return *this;
  }

  template <class int_type>
  constexpr typename std::enable_if<is_integral_ext<int_type>::value,
                                    modint_base>::type &
  operator*=(int_type rhs) noexcept {
    if (!rhs)
      value = 0;
    else if (value) {
      if ((rhs %= mod) < 0) rhs += mod;
      mul_type __r(value);
      value = static_cast<value_type &&>((__r *= rhs) %= mod);
    }
    return *this;
  }

  // }} operator*=

  // operator* {{

  constexpr modint_base operator*(modint_base const &rhs) const noexcept {
    if (!value or !rhs.value) return {};
    mul_type __r(value);
    modint_base __t;
    __t.value = static_cast<value_type &&>((__r *= rhs.value) %= mod);
    return __t;
  }

  template <class int_type>
  constexpr typename std::enable_if<is_integral_ext<int_type>::value,
                                    modint_base>::type
  operator*(int_type rhs) const noexcept {
    if (!value or !rhs) return {};
    if ((rhs %= mod) < 0) rhs += mod;
    mul_type __r(value);
    modint_base __t;
    __t.value = static_cast<value_type &&>((__r *= rhs) %= mod);
    return __t;
  }

  template <class int_type>
  constexpr friend typename std::enable_if<is_integral_ext<int_type>::value,
                                           modint_base>::type
  operator*(int_type lhs, modint_base const &rhs) noexcept {
    if (!lhs or !rhs.value) return {};
    if ((lhs %= mod) < 0) lhs += mod;
    mul_type __r(lhs);
    modint_base __t;
    __t.value = static_cast<value_type &&>((__r *= rhs.value) %= mod);
    return __t;
  }

  // }} operator*

 protected:
  static value_type _mem(value_type __x) {
    static std::vector<value_type> __m{0, 1};
    static value_type __i = (__m.reserve(Storage), 1);
    while (__i < __x) {
      ++__i;
      __m.emplace_back(mod - mul_type(mod / __i) * __m[mod % __i] % mod);
    }
    return __m[__x];
  }

  template <class int_type>
  constexpr static typename std::enable_if<is_integral_ext<int_type>::value,
                                           value_type>::type
  _div(mul_type __r, int_type __x) noexcept {
    assert(__x);
    if (!__r) return 0;
    int_type __v{};
    bool __neg = __x < 0 ? __x = -__x, true : false;
    if (__x < storage)
      __v = _mem(__x);
    else {
      int_type __y{mod}, __u{1}, __t;
      while (__x)
        __t = __y / __x, __y ^= __x ^= (__y -= __t * __x) ^= __x,
        __v ^= __u ^= (__v -= __t * __u) ^= __u;
      if (__y < 0) __neg ^= 1;
    }
    if (__neg)
      __v = 0 < __v ? mod - __v : -__v;
    else if (__v < 0)
      __v += mod;
    if (__r == 1) return static_cast<value_type>(__v);
    return static_cast<value_type>((__r *= __v) %= mod);
  }

 public:
  // operator/= {{

  constexpr modint_base &operator/=(modint_base const &rhs) noexcept {
    if (value) value = _div(value, rhs.value);
    return *this;
  }

  template <class int_type>
  constexpr typename std::enable_if<is_integral_ext<int_type>::value,
                                    modint_base>::type &
  operator/=(int_type rhs) noexcept {
    if (value) value = _div(value, rhs %= mod);
    return *this;
  }

  // }} operator/=

  // operator/ {{

  constexpr modint_base operator/(modint_base const &rhs) const noexcept {
    if (!value) return {};
    modint_base __t;
    __t.value = _div(value, rhs.value);
    return __t;
  }

  template <class int_type>
  constexpr typename std::enable_if<is_integral_ext<int_type>::value,
                                    modint_base>::type
  operator/(int_type rhs) const noexcept {
    if (!value) return {};
    modint_base __t;
    __t.value = _div(value, rhs %= mod);
    return __t;
  }

  template <class int_type>
  constexpr friend typename std::enable_if<is_integral_ext<int_type>::value,
                                           modint_base>::type
  operator/(int_type lhs, modint_base const &rhs) noexcept {
    if (!lhs) return {};
    if ((lhs %= mod) < 0) lhs += mod;
    modint_base __t;
    __t.value = _div(lhs, rhs.value);
    return __t;
  }

  // }} operator/

  constexpr modint_base inv() const noexcept { return _div(1, value); }

  template <class int_type>
  friend constexpr typename std::enable_if<is_integral_ext<int_type>::value,
                                           modint_base>::type
  pow(modint_base b, int_type e) noexcept {
    if (e < 0) {
      e = -e;
      b.value = _div(1, b.value);
    }
    modint_base __r;
    for (__r.value = 1; e; e >>= 1, b *= b)
      if (e & 1) __r *= b;
    return __r;
  }

  template <class int_type>
  constexpr typename std::enable_if<is_integral_ext<int_type>::value,
                                    modint_base>::type
  pow(int_type e) const noexcept {
    modint_base __r, b;
    __r.value = 1;
    for (b.value = e < 0 ? e = -e, _div(1, value) : value; e; e >>= 1, b *= b)
      if (e & 1) __r *= b;
    return __r;
  }

  friend std::ostream &operator<<(std::ostream &os,
                                  const modint_base &rhs) noexcept {
    return os << rhs.value;
  }

  friend std::istream &operator>>(std::istream &is, modint_base &rhs) noexcept {
    intmax_t value;
    rhs = (is >> value, value);
    return is;
  }
};

template <auto Mod, unsigned Storage>
typename modint_base<Mod, Storage>::mod_type modint_base<Mod, Storage>::mod =
    Mod > 0 ? Mod : 0;

template <auto Mod, unsigned Storage>
typename modint_base<Mod, Storage>::value_type
    modint_base<Mod, Storage>::storage = Storage;

}  // namespace internal

/**
 * @brief Modular arithmetic.
 *
 * @tparam Mod modulus
 * @tparam Storage Reserved size for inverse calculation
 */
template <auto Mod, unsigned Storage = 0,
          typename std::enable_if<(Mod > 0)>::type * = nullptr>
using modint = internal::modint_base<Mod, Storage>;

/**
 * @brief Runtime modular arithmetic.
 *
 * @tparam type_id uniquely assigned
 * @tparam Storage Reserved size for inverse calculation
 */
template <unsigned type_id = 0, unsigned Storage = 0>
using modint_runtime = internal::modint_base<-(signed)type_id, Storage>;

// #define modint_newtype modint_runtime<__COUNTER__>

}  // namespace workspace
#line 29 "other/ms.cc"

namespace workspace {

using mint = modint<(int)1e9 + 7>;
using mat = matrix<mint, 3>;
using vec = matrix<mint, 1, 3>;

void main() {
  // start here!
  using std::cin;
  using std::cout;

  int n, q;
  cin >> n >> q;
  segment_tree<vec, mat> sgt(n);

  // init
  {
    mint a = 0, b = 1;
    for (auto &&x : sgt) {
      x = {{0, 1, a}};
      std::swap(b, a += b);
    }
  }

  while (q--) {
    int tp, l, r, k;
    cin >> tp >> l >> r >> k;
    ++r;
    mat op = mat::eye();

    switch (tp) {
      case 0: {
        cout << sgt.fold(l, r)[0][0] * k << "\n";
      } break;

      case 1: {
        op[0][0] = 0;
        op[1][0] = k;
        sgt.update(l, r, op);
      } break;

      case 2: {
        op[1][0] = k;
        sgt.update(l, r, op);
      } break;

      case 3: {
        op[0][0] = k;
        sgt.update(l, r, op);
      } break;

      case 4: {
        op[2][0] = k;
        sgt.update(l, r, op);
      } break;
    }
  }
}

}  // namespace workspace

int main() {
  std::ios::sync_with_stdio(false);
  std::cin.tie(0);
  workspace::main();
}
0