結果
問題 | No.1776 Love Triangle 2 (Hard) |
ユーザー | ygussany |
提出日時 | 2021-11-19 18:40:20 |
言語 | C (gcc 12.3.0) |
結果 |
AC
|
実行時間 | 1,831 ms / 10,000 ms |
コード長 | 7,953 bytes |
コンパイル時間 | 463 ms |
コンパイル使用メモリ | 37,112 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-06 21:16:38 |
合計ジャッジ時間 | 43,586 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,816 KB |
testcase_01 | AC | 1 ms
6,944 KB |
testcase_02 | AC | 1 ms
6,944 KB |
testcase_03 | AC | 1 ms
6,940 KB |
testcase_04 | AC | 225 ms
6,940 KB |
testcase_05 | AC | 432 ms
6,940 KB |
testcase_06 | AC | 419 ms
6,940 KB |
testcase_07 | AC | 121 ms
6,944 KB |
testcase_08 | AC | 264 ms
6,940 KB |
testcase_09 | AC | 10 ms
6,940 KB |
testcase_10 | AC | 12 ms
6,940 KB |
testcase_11 | AC | 9 ms
6,944 KB |
testcase_12 | AC | 8 ms
6,940 KB |
testcase_13 | AC | 8 ms
6,944 KB |
testcase_14 | AC | 8 ms
6,940 KB |
testcase_15 | AC | 9 ms
6,944 KB |
testcase_16 | AC | 7 ms
6,944 KB |
testcase_17 | AC | 9 ms
6,944 KB |
testcase_18 | AC | 24 ms
6,944 KB |
testcase_19 | AC | 10 ms
6,940 KB |
testcase_20 | AC | 12 ms
6,944 KB |
testcase_21 | AC | 11 ms
6,944 KB |
testcase_22 | AC | 10 ms
6,944 KB |
testcase_23 | AC | 8 ms
6,940 KB |
testcase_24 | AC | 9 ms
6,944 KB |
testcase_25 | AC | 8 ms
6,944 KB |
testcase_26 | AC | 9 ms
6,944 KB |
testcase_27 | AC | 9 ms
6,940 KB |
testcase_28 | AC | 8 ms
6,940 KB |
testcase_29 | AC | 35 ms
6,940 KB |
testcase_30 | AC | 51 ms
6,944 KB |
testcase_31 | AC | 177 ms
6,944 KB |
testcase_32 | AC | 294 ms
6,940 KB |
testcase_33 | AC | 376 ms
6,940 KB |
testcase_34 | AC | 376 ms
6,940 KB |
testcase_35 | AC | 363 ms
6,944 KB |
testcase_36 | AC | 293 ms
6,944 KB |
testcase_37 | AC | 190 ms
6,944 KB |
testcase_38 | AC | 47 ms
6,944 KB |
testcase_39 | AC | 29 ms
6,944 KB |
testcase_40 | AC | 108 ms
6,940 KB |
testcase_41 | AC | 167 ms
6,940 KB |
testcase_42 | AC | 173 ms
6,940 KB |
testcase_43 | AC | 147 ms
6,944 KB |
testcase_44 | AC | 54 ms
6,944 KB |
testcase_45 | AC | 394 ms
6,944 KB |
testcase_46 | AC | 77 ms
6,944 KB |
testcase_47 | AC | 10 ms
6,944 KB |
testcase_48 | AC | 38 ms
6,940 KB |
testcase_49 | AC | 12 ms
6,944 KB |
testcase_50 | AC | 47 ms
6,944 KB |
testcase_51 | AC | 154 ms
6,944 KB |
testcase_52 | AC | 243 ms
6,944 KB |
testcase_53 | AC | 305 ms
6,944 KB |
testcase_54 | AC | 315 ms
6,944 KB |
testcase_55 | AC | 305 ms
6,940 KB |
testcase_56 | AC | 302 ms
6,940 KB |
testcase_57 | AC | 169 ms
6,940 KB |
testcase_58 | AC | 143 ms
6,944 KB |
testcase_59 | AC | 32 ms
6,944 KB |
testcase_60 | AC | 76 ms
6,944 KB |
testcase_61 | AC | 105 ms
6,940 KB |
testcase_62 | AC | 41 ms
6,944 KB |
testcase_63 | AC | 42 ms
6,940 KB |
testcase_64 | AC | 64 ms
6,944 KB |
testcase_65 | AC | 10 ms
6,944 KB |
testcase_66 | AC | 20 ms
6,944 KB |
testcase_67 | AC | 26 ms
6,944 KB |
testcase_68 | AC | 7 ms
6,940 KB |
testcase_69 | AC | 764 ms
6,940 KB |
testcase_70 | AC | 1,499 ms
6,940 KB |
testcase_71 | AC | 1,450 ms
6,940 KB |
testcase_72 | AC | 431 ms
6,944 KB |
testcase_73 | AC | 940 ms
6,944 KB |
testcase_74 | AC | 19 ms
6,940 KB |
testcase_75 | AC | 15 ms
6,940 KB |
testcase_76 | AC | 14 ms
6,940 KB |
testcase_77 | AC | 12 ms
6,940 KB |
testcase_78 | AC | 12 ms
6,940 KB |
testcase_79 | AC | 11 ms
6,940 KB |
testcase_80 | AC | 14 ms
6,940 KB |
testcase_81 | AC | 13 ms
6,940 KB |
testcase_82 | AC | 20 ms
6,940 KB |
testcase_83 | AC | 50 ms
6,940 KB |
testcase_84 | AC | 21 ms
6,944 KB |
testcase_85 | AC | 17 ms
6,940 KB |
testcase_86 | AC | 15 ms
6,944 KB |
testcase_87 | AC | 12 ms
6,940 KB |
testcase_88 | AC | 14 ms
6,944 KB |
testcase_89 | AC | 17 ms
6,940 KB |
testcase_90 | AC | 12 ms
6,940 KB |
testcase_91 | AC | 12 ms
6,944 KB |
testcase_92 | AC | 14 ms
6,944 KB |
testcase_93 | AC | 14 ms
6,940 KB |
testcase_94 | AC | 83 ms
6,940 KB |
testcase_95 | AC | 192 ms
6,944 KB |
testcase_96 | AC | 668 ms
6,944 KB |
testcase_97 | AC | 1,377 ms
6,944 KB |
testcase_98 | AC | 1,785 ms
6,944 KB |
testcase_99 | AC | 1,831 ms
6,940 KB |
testcase_100 | AC | 1,568 ms
6,944 KB |
testcase_101 | AC | 1,024 ms
6,940 KB |
testcase_102 | AC | 544 ms
6,940 KB |
testcase_103 | AC | 155 ms
6,940 KB |
testcase_104 | AC | 51 ms
6,940 KB |
testcase_105 | AC | 221 ms
6,944 KB |
testcase_106 | AC | 508 ms
6,944 KB |
testcase_107 | AC | 95 ms
6,940 KB |
testcase_108 | AC | 449 ms
6,944 KB |
testcase_109 | AC | 111 ms
6,944 KB |
testcase_110 | AC | 94 ms
6,940 KB |
testcase_111 | AC | 79 ms
6,940 KB |
testcase_112 | AC | 28 ms
6,944 KB |
testcase_113 | AC | 41 ms
6,944 KB |
testcase_114 | AC | 80 ms
6,944 KB |
testcase_115 | AC | 165 ms
6,940 KB |
testcase_116 | AC | 573 ms
6,944 KB |
testcase_117 | AC | 1,144 ms
6,940 KB |
testcase_118 | AC | 1,524 ms
6,944 KB |
testcase_119 | AC | 1,516 ms
6,944 KB |
testcase_120 | AC | 1,345 ms
6,940 KB |
testcase_121 | AC | 821 ms
6,940 KB |
testcase_122 | AC | 614 ms
6,944 KB |
testcase_123 | AC | 527 ms
6,944 KB |
testcase_124 | AC | 87 ms
6,940 KB |
testcase_125 | AC | 89 ms
6,940 KB |
testcase_126 | AC | 160 ms
6,944 KB |
testcase_127 | AC | 86 ms
6,940 KB |
testcase_128 | AC | 71 ms
6,940 KB |
testcase_129 | AC | 54 ms
6,944 KB |
testcase_130 | AC | 57 ms
6,940 KB |
testcase_131 | AC | 53 ms
6,944 KB |
testcase_132 | AC | 39 ms
6,944 KB |
testcase_133 | AC | 24 ms
6,944 KB |
testcase_134 | AC | 17 ms
6,940 KB |
testcase_135 | AC | 69 ms
6,940 KB |
testcase_136 | AC | 68 ms
6,940 KB |
testcase_137 | AC | 60 ms
6,940 KB |
testcase_138 | AC | 84 ms
6,940 KB |
testcase_139 | AC | 137 ms
6,944 KB |
testcase_140 | AC | 114 ms
6,940 KB |
testcase_141 | AC | 67 ms
6,940 KB |
testcase_142 | AC | 114 ms
6,940 KB |
testcase_143 | AC | 82 ms
6,944 KB |
testcase_144 | AC | 19 ms
6,940 KB |
testcase_145 | AC | 22 ms
6,940 KB |
testcase_146 | AC | 54 ms
6,944 KB |
testcase_147 | AC | 22 ms
6,940 KB |
testcase_148 | AC | 49 ms
6,944 KB |
testcase_149 | AC | 40 ms
6,940 KB |
testcase_150 | AC | 58 ms
6,940 KB |
testcase_151 | AC | 26 ms
6,940 KB |
testcase_152 | AC | 47 ms
6,944 KB |
testcase_153 | AC | 74 ms
6,944 KB |
testcase_154 | AC | 43 ms
6,940 KB |
testcase_155 | AC | 202 ms
6,944 KB |
testcase_156 | AC | 259 ms
6,940 KB |
testcase_157 | AC | 152 ms
6,940 KB |
testcase_158 | AC | 164 ms
6,940 KB |
testcase_159 | AC | 215 ms
6,940 KB |
testcase_160 | AC | 89 ms
6,940 KB |
testcase_161 | AC | 134 ms
6,944 KB |
testcase_162 | AC | 350 ms
6,940 KB |
testcase_163 | AC | 387 ms
6,940 KB |
testcase_164 | AC | 393 ms
6,940 KB |
testcase_165 | AC | 178 ms
6,940 KB |
testcase_166 | AC | 93 ms
6,940 KB |
testcase_167 | AC | 102 ms
6,944 KB |
testcase_168 | AC | 59 ms
6,940 KB |
testcase_169 | AC | 102 ms
6,944 KB |
testcase_170 | AC | 162 ms
6,940 KB |
testcase_171 | AC | 253 ms
6,940 KB |
testcase_172 | AC | 132 ms
6,940 KB |
testcase_173 | AC | 349 ms
6,944 KB |
testcase_174 | AC | 138 ms
6,944 KB |
testcase_175 | AC | 149 ms
6,940 KB |
ソースコード
#include <stdio.h> #define N_MAX 150 #define M_MAX 12000 typedef struct Edge { struct Edge *next; int v; unsigned int label; } edge; void chmin(int* a, int b) { if (*a > b) *a = b; } int lex_smaller(int a[], int b[]) { int i; for (i = 0; i <= a[0]; i++) { if (a[i] < b[i]) return 1; else if (a[i] > b[i]) return -1; } return 0; } void chlexmin(int a[], int b[]) { int i; if (lex_smaller(a, b) < 0) for (i = 0; i <= b[0]; i++) a[i] = b[i]; } void print_ans(int N, int ans[]) { int i; if (ans[0] > N) { printf("-1\n"); return; } else printf("%d\n", ans[0]); for (i = 1; i <= ans[0]; i++) printf("%d ", ans[i]); printf("%d\n", ans[1]); } #define MT_N 624 #define MT_M 397 #define MT_MATRIX_A 0x9908b0dfUL #define MT_UPPER_MASK 0x80000000UL #define MT_LOWER_MASK 0x7fffffffUL static unsigned int mt[MT_N]; static int mti = MT_N + 1; void init_genrand(unsigned int s) { mt[0] = s & 0xffffffffUL; for (mti = 1; mti < MT_N; mti++) { mt[mti] = (1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti); mt[mti] &= 0xffffffffUL; } } unsigned int genrand() { unsigned int y; static unsigned int mag01[2] = {0x0UL, MT_MATRIX_A}; if (mti >= MT_N) { int kk; if (mti == MT_N + 1) init_genrand(5489UL); for (kk = 0; kk < MT_N - MT_M; kk++) { y = (mt[kk] & MT_UPPER_MASK) | (mt[kk+1] & MT_LOWER_MASK); mt[kk] = mt[kk+MT_M] ^ (y >> 1) ^ mag01[y&0x1UL]; } for (; kk < MT_N - 1; kk++) { y = (mt[kk] & MT_UPPER_MASK) | (mt[kk+1] & MT_LOWER_MASK); mt[kk] = mt[kk+(MT_M-MT_N)] ^ (y >> 1) ^ mag01[y&0x1UL]; } y = (mt[MT_N-1] & MT_UPPER_MASK) | (mt[0] & MT_LOWER_MASK); mt[MT_N-1] = mt[MT_M-1] ^ (y >> 1) ^ mag01[y&0x1UL]; mti = 0; } y = mt[mti++]; y ^= (y >> 11); y ^= (y << 7) & 0x9d2c5680UL; y ^= (y << 15) & 0xefc60000UL; y ^= (y >> 18); return y; } #define POWX 4 // 3 -> 2^8, 4 -> 2^16, 5 -> 2^32 const unsigned int powd[6] = {2, 4, 16, 256, 65536}, powe[6] = {1, 2, 4, 8, 16, 32}; // Multiplication on a finite field of size 2^32 with XOR addition unsigned int nim_product(unsigned int A, unsigned int B) { if (A > B) return nim_product(B, A); else if (A <= 1) return A * B; static unsigned int memo[256][256] = {}; if (B < 256 && memo[A][B] != 0) return memo[A][B]; int i; for (i = 0; i < POWX; i++) { if (B == powd[i]) { if (A == powd[i]) return (B >> 1) * 3; else return A * B; } } unsigned int a[2], b[2], ans[2][2]; for (i = POWX - 1; i >= 0; i--) if (B > powd[i]) break; a[1] = A & (powd[i] - 1); a[0] = (A ^ a[1]) >> powe[i]; b[1] = B & (powd[i] - 1); b[0] = (B ^ b[1]) >> powe[i]; ans[0][0] = nim_product(a[0], b[0]); ans[0][1] = nim_product(a[0], b[1]); ans[1][0] = nim_product(a[1], b[0]); ans[1][1] = nim_product(a[1], b[1]); if (B < 256) { memo[A][B] = (ans[0][0] ^ ans[0][1] ^ ans[1][0]) * powd[i] ^ nim_product(ans[0][0], powd[i] >> 1) ^ ans[1][1]; return memo[A][B]; } else return (ans[0][0] ^ ans[0][1] ^ ans[1][0]) * powd[i] ^ nim_product(ans[0][0], powd[i] >> 1) ^ ans[1][1]; } int solve4_lexmin_sub(int N, int X, int Y, int Z, edge* adj[], edge* d_adj[][N_MAX + 1], int s, int flag[]) { static int i, k, kk, l, n, u, w, x, y, z; static unsigned int dp[N_MAX + 1][4][N_MAX + 1], tmp; static edge *p; kk = ((flag[Y] != 0)? 1: 0) | ((flag[Z] != 0)? 2: 0); for (u = 1, n = 0; u <= N; u++) if (flag[u] == 0) n++; for (l = 0; l <= N; l++) for (k = 0; k < 4; k++) for (u = 1; u <= N; u++) dp[l][k][u] = 0; for (p = adj[X]; p != NULL; p = p->next) if (flag[p->v] == 0) dp[1][kk][p->v] = p->label; for (l = 1; l <= n; l++) { for (p = adj[s]; p != NULL; p = p->next) if (flag[p->v] == 0 && dp[l][3][p->v] != 0) break; if (p != NULL) break; if (flag[Y] == 0) { for (p = d_adj[1][s]; p != NULL; p = p->next) if (flag[p->v] == 0 && dp[l-1][2][p->v] != 0) break; if (p != NULL) break; } if (flag[Z] == 0) { for (p = d_adj[2][s]; p != NULL; p = p->next) if (flag[p->v] == 0 && dp[l-1][1][p->v] != 0) break; if (p != NULL) break; } if (l == n) return -1; for (k = 0; k < 4; k++) { if ((k & kk) != kk) continue; for (y = 1; y <= N; y++) { if (flag[y] != 0 || y == X || y == Y || y == Z) continue; tmp = dp[l][k][y]; for (p = adj[y]; p != NULL; p = p->next) { z = p->v; dp[l+1][k][z] ^= nim_product(tmp, p->label); } if (l == n - 1) continue; if ((k & 1) == 0) { for (p = d_adj[1][y]; p != NULL; p = p->next) { z = p->v; dp[l+2][k|1][z] ^= nim_product(tmp, p->label); } } if ((k & 2) == 0) { for (p = d_adj[2][y]; p != NULL; p = p->next) { z = p->v; dp[l+2][k|2][z] ^= nim_product(tmp, p->label); } } } } } int ans = N + 1; for (p = adj[s]; p != NULL; p = p->next) if (flag[p->v] == 0 && dp[l][3][p->v] != 0) chmin(&ans, p->v); if (ans < Y) return ans; else if (flag[Y] == 0) for (p = d_adj[1][s]; p != NULL; p = p->next) if (flag[p->v] == 0 && dp[l-1][2][p->v] != 0) ans = Y; if (ans < Z) return ans; else if (flag[Z] == 0) for (p = d_adj[2][s]; p != NULL; p = p->next) if (flag[p->v] == 0 && dp[l-1][1][p->v] != 0) ans = Z; return ans; } // Solution example (O(N^4) time with all speeding-up) for finding the lexmin solution int solve4_lexmin(int N, int M, int X, int Y, int Z, int A[], int B[], int ans[]) { static int i, u, w, adj_mat[N_MAX + 1][N_MAX + 1]; static edge *adj[N_MAX + 1], e[M_MAX * 2], *p, *pp; for (u = 1; u <= N; u++) for (w = u + 1; w <= N; w++) adj_mat[u][w] = 0; for (i = 1; i <= M; i++) { u = A[i]; w = B[i]; adj_mat[u][w] = 1; } for (u = 1; u <= N; u++) adj[u] = NULL; for (u = 1, i = 0; u <= N; u++) { for (w = u + 1; w <= N; w++) { if (adj_mat[u][w] != 0) continue; e[i].v = w; e[i].label = genrand() % (powd[POWX] - 1) + 1; e[i].next = adj[u]; adj[u] = &(e[i++]); e[i].v = u; e[i].label = (u == X || w == X)? genrand() % (powd[POWX] - 1) + 1: e[i-1].label; e[i].next = adj[w]; adj[w] = &(e[i++]); } } static edge *d_adj[3][N_MAX + 1], f[N_MAX * N_MAX * 2]; for (u = 1; u <= N; u++) { d_adj[1][u] = NULL; d_adj[2][u] = NULL; } for (p = adj[Y], i = 0; p != NULL; p = p->next) { u = p->v; for (pp = p->next; pp != NULL; pp = pp->next) { w = pp->v; f[i].v = w; f[i].label = nim_product(p->label, pp->label); f[i].next = d_adj[1][u]; d_adj[1][u] = &(f[i++]); f[i].v = u; f[i].label = f[i-1].label; f[i].next = d_adj[1][w]; d_adj[1][w] = &(f[i++]); } } for (p = adj[Z]; p != NULL; p = p->next) { u = p->v; for (pp = p->next; pp != NULL; pp = pp->next) { w = pp->v; f[i].v = w; f[i].label = nim_product(p->label, pp->label); f[i].next = d_adj[2][u]; d_adj[2][u] = &(f[i++]); f[i].v = u; f[i].label = f[i-1].label; f[i].next = d_adj[2][w]; d_adj[2][w] = &(f[i++]); } } static int flag[N_MAX + 1]; for (u = 1; u <= N; u++) flag[u] = 0; ans[1] = X; ans[2] = solve4_lexmin_sub(N, X, Y, Z, adj, d_adj, X, flag); if (ans[2] < 0) { ans[0] = N + 1; for (i = 1; i <= N + 1; i++) ans[i] = 0; return -1; } else ans[0] = 2; flag[ans[1]] = 1; flag[ans[2]] = 1; while (1) { u = ans[ans[0]]; if (flag[Y] != 0 && flag[Z] != 0) { for (p = adj[u]; p != NULL; p = p->next) if (p->v == X) break; if (p != NULL) break; } w = solve4_lexmin_sub(N, X, Y, Z, adj, d_adj, u, flag); flag[w] = 1; ans[++ans[0]] = w; } return ans[0]; } int main() { int i, N, M, X, Y, Z, A[M_MAX + 1], B[M_MAX + 1], ans[2][N_MAX + 2]; scanf("%d %d", &N, &M); scanf("%d %d %d", &X, &Y, &Z); for (i = 1; i <= M; i++) scanf("%d %d", &(A[i]), &(B[i])); solve4_lexmin(N, M, X, Y, Z, A, B, ans[0]); solve4_lexmin(N, M, X, Y, Z, A, B, ans[1]); chlexmin(ans[0], ans[1]); // solve4_lexmin(N, M, X, Y, Z, A, B, ans[1]); // chlexmin(ans[0], ans[1]); print_ans(N, ans[0]); fflush(stdout); return 0; }