結果

問題 No.1747 Many Formulae 2
ユーザー ecotteaecottea
提出日時 2021-11-19 21:28:09
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 14,019 bytes
コンパイル時間 3,465 ms
コンパイル使用メモリ 231,548 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-06-10 07:52:32
合計ジャッジ時間 4,127 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 1 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 1 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 1 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
testcase_15 AC 2 ms
5,376 KB
testcase_16 AC 2 ms
5,376 KB
testcase_17 AC 2 ms
5,376 KB
testcase_18 AC 1 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VISUAL_STUDIO // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = 3.14159265359;
const double DEG = PI / 180.; // θ [deg] = θ * DEG [rad]
const vi dx4 = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vi dy4 = { 0, 1, 0, -1 };
const vi dx8 = { 1, 1, 0, -1, -1, -1, 0, 1 }; // 8 近傍
const vi dy8 = { 0, 1, 1, 1, 0, -1, -1, -1 };
const int INF = 1001001001; const ll INFL = 4004004004004004004LL;
const double EPS = 1e-10; // 許容誤差に応じて調整

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define distance (int)distance
#define Yes(b) {cout << ((b) ? "Yes" : "No") << endl;}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define repit(it, a) for(auto it = (a).begin(); it != (a).end(); ++it) // イテレータを回す(昇順)
#define repitr(it, a) for(auto it = (a).rbegin(); it != (a).rend(); ++it) // イテレータを回す(降順)
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod
#define uniq(a) {sort(all(a)); a.erase(unique(all(a)), a.end());} // 重複除去

// 汎用関数の定義
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)

// 入出力用の >>, << のオーバーロード
template <class T, class U> inline istream& operator>> (istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T, class U> inline ostream& operator<< (ostream& os, const pair<T, U>& p) { os << "(" << p.first << "," << p.second << ")"; return os; }
template <class T, class U, class V> inline istream& operator>> (istream& is, tuple<T, U, V>& t) { is >> get<0>(t) >> get<1>(t) >> get<2>(t); return is; }
template <class T, class U, class V> inline ostream& operator<< (ostream& os, const tuple<T, U, V>& t) { os << "(" << get<0>(t) << "," << get<1>(t) << "," << get<2>(t) << ")"; return os; }
template <class T, class U, class V, class W> inline istream& operator>> (istream& is, tuple<T, U, V, W>& t) { is >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t); return is; }
template <class T, class U, class V, class W> inline ostream& operator<< (ostream& os, const tuple<T, U, V, W>& t) { os << "(" << get<0>(t) << "," << get<1>(t) << "," << get<2>(t) << "," << get<3>(t) << ")"; return os; }
template <class T> inline istream& operator>> (istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline ostream& operator<< (ostream& os, const vector<T>& v) { repe(x, v) os << x << " "; return os; }
template <class T> inline ostream& operator<< (ostream& os, const set<T>& s) { repe(x, s) os << x << " "; return os; }
template <class T> inline ostream& operator<< (ostream& os, const unordered_set<T>& s) { repe(x, s) os << x << " "; return os; }
template <class T, class U> inline ostream& operator<< (ostream& os, const map<T, U>& m) { repe(p, m) os << p << " "; return os; }
template <class T, class U> inline ostream& operator<< (ostream& os, const unordered_map<T, U>& m) { repe(p, m) os << p << " "; return os; }
template <class T> inline ostream& operator<< (ostream& os, stack<T> s) { while (!s.empty()) { os << s.top() << " "; s.pop(); } return os; }
template <class T> inline ostream& operator<< (ostream& os, queue<T> q) { while (!q.empty()) { os << q.front() << " "; q.pop(); } return os; }
template <class T> inline ostream& operator<< (ostream& os, deque<T> q) { while (!q.empty()) { os << q.front() << " "; q.pop_front(); } return os; }
template <class T> inline ostream& operator<< (ostream& os, priority_queue<T> q) { while (!q.empty()) { os << q.top() << " "; q.pop(); } return os; }
template <class T> inline ostream& operator<< (ostream& os, priority_queue_rev<T> q) { while (!q.empty()) { os << q.top() << " "; q.pop(); } return os; }

// 手元環境(Visual Studio)
#ifdef _MSC_VER
#define popcount (int)__popcnt // 全ビット中の 1 の個数
#define popcountll (int)__popcnt64
inline int lsb(unsigned int n) { unsigned long i; _BitScanForward(&i, n); return i; } // 最下位ビットの位置(0-indexed)
inline int lsbll(unsigned long long n) { unsigned long i; _BitScanForward64(&i, n); return i; }
inline int msb(unsigned int n) { unsigned long i; _BitScanReverse(&i, n); return i; } // 最上位ビットの位置(0-indexed)
inline int msbll(unsigned long long n) { unsigned long i; _BitScanReverse64(&i, n); return i; }
template <class T> T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }
#define dump(x) cout << "\033[1;36m" << (x) << "\033[0m" << endl;
#define dumps(x) cout << "\033[1;36m" << (x) << "\033[0m ";
#define dumpel(a) { int i = 0; cout << "\033[1;36m"; repe(x, a) {cout << i++ << ": " << x << endl;} cout << "\033[0m"; }
#define input_from_file(f) ifstream isTMP(f); cin.rdbuf(isTMP.rdbuf());
#define output_to_file(f) ofstream osTMP(f); cout.rdbuf(osTMP.rdbuf());
// 提出用(gcc)
#else
#define popcount (int)__builtin_popcount
#define popcountll (int)__builtin_popcountll
#define lsb __builtin_ctz
#define lsbll __builtin_ctzll
#define msb(n) (31 - __builtin_clz(n))
#define msbll(n) (63 - __builtin_clzll(n))
#define gcd __gcd
#define dump(x)
#define dumps(x)
#define dumpel(v)
#define input_from_file(f)
#define output_to_file(f)
#endif

#endif // 折りたたみ用


//-----------------AtCoder 専用-----------------
#include <atcoder/all>
using namespace atcoder;

//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);

template <class S, S(*op)(S, S), S(*e)()>ostream& operator<<(ostream& os, segtree<S, op, e> seg) { int n = seg.max_right(0, [](S x) {return true; }); rep(i, n) os << seg.get(i) << " "; return os; }
template <class S, S(*op)(S, S), S(*e)(), class F, S(*mp)(F, S), F(*cp)(F, F), F(*id)()>ostream& operator<<(ostream& os, lazy_segtree<S, op, e, F, mp, cp, id> seg) { int n = seg.max_right(0, [](S x) {return true; }); rep(i, n) os << seg.get(i) << " "; return os; }
istream& operator>> (istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
ostream& operator<< (ostream& os, const mint& x) { os << x.val(); return os; }
using vm = vector<mint>;	using vvm = vector<vm>;		using vvvm = vector<vvm>;
//----------------------------------------------


//【有限体 F_p 上の計算(64 bit)】
/*
* 有限体 F_p 上ので様々な計算を行う.
*
* 制約 : p は素数,コンパイラは gcc
*/
#ifdef _MSC_VER
#define __int128 ll // デバッグ用
#endif
struct mll {
	__int128 v;
	static __int128 MOD;

	// コンストラクタ
	mll() : v(0) {};
	mll(const mll& a) = default;
	mll(const int& a) : v(safe_mod(a)) {};
	mll(const ll& a) : v(safe_mod(a)) {};

	// 代入
	mll& operator=(const mll& a) { v = a.v; return *this; }
	mll& operator=(const int& a) { v = safe_mod(a); return *this; }
	mll& operator=(const ll& a) { v = safe_mod(a); return *this; }

	// 入出力
	friend istream& operator>> (istream& is, mll& x) { ll tmp; is >> tmp; x.v = safe_mod(tmp); return is; }
	friend ostream& operator<< (ostream& os, const mll& x) { os << (ll)x.v; return os; }

	// 非負 mod
	template <class T> static __int128 safe_mod(T a) { return ((a % MOD) + MOD) % MOD; }

	// 比較
	bool operator==(const mll& b) const { return v == b.v; }
	bool operator==(const int& b) const { return v == safe_mod(b); }
	bool operator==(const ll& b) const { return v == safe_mod(b); }
	friend bool operator==(const int& a, const mll& b) { return b == a; }
	friend bool operator==(const ll& a, const mll& b) { return b == a; }

	// 演算
	mll& operator+=(const mll& b) { v = safe_mod(v + b.v); return *this; }
	mll& operator-=(const mll& b) { v = safe_mod(v - b.v); return *this; }
	mll& operator*=(const mll& b) { v = safe_mod(v * b.v); return *this; }
	mll& operator/=(const mll& b) { *this *= b.inv(); return *this; }
	mll operator+(const mll& b) const { mll a = *this; return a += b; }
	mll operator-(const mll& b) const { mll a = *this; return a -= b; }
	mll operator*(const mll& b) const { mll a = *this; return a *= b; }
	mll operator/(const mll& b) const { mll a = *this; return a /= b; }
	mll operator-() const { mll a = *this; return a *= -1; }

	// int との演算
	mll& operator+=(const int& b) { v = safe_mod(v + b); return *this; }
	mll& operator-=(const int& b) { v = safe_mod(v - b); return *this; }
	mll& operator*=(const int& b) { v = safe_mod(v * b); return *this; }
	mll& operator/=(const int& b) { *this *= mll(b).inv(); return *this; }
	mll operator+(const int& b) const { mll a = *this; return a += b; }
	mll operator-(const int& b) const { mll a = *this; return a -= b; }
	mll operator*(const int& b) const { mll a = *this; return a *= b; }
	mll operator/(const int& b) const { mll a = *this; return a /= b; }
	friend mll operator+(const int& a, const mll& b) { return b + a; }
	friend mll operator-(const int& a, const mll& b) { return -(b - a); }
	friend mll operator*(const int& a, const mll& b) { return b * a; }
	friend mll operator/(const int& a, const mll& b) { return mll(a) * b.inv(); }

	// ll との演算
	mll& operator+=(const ll& b) { v = safe_mod(v + b); return *this; }
	mll& operator-=(const ll& b) { v = safe_mod(v - b); return *this; }
	mll& operator*=(const ll& b) { v = safe_mod(v * b); return *this; }
	mll& operator/=(const ll& b) { *this *= mll(b).inv(); return *this; }
	mll operator+(const ll& b) const { mll a = *this; return a += b; }
	mll operator-(const ll& b) const { mll a = *this; return a -= b; }
	mll operator*(const ll& b) const { mll a = *this; return a *= b; }
	mll operator/(const ll& b) const { mll a = *this; return a /= b; }
	friend mll operator+(const ll& a, const mll& b) { return b + a; }
	friend mll operator-(const ll& a, const mll& b) { return -(b - a); }
	friend mll operator*(const ll& a, const mll& b) { return b * a; }
	friend mll operator/(const ll& a, const mll& b) { return mll(a) * b.inv(); }

	// 累乗
	mll pow(ll d) const {
		mll res(1), pow2 = *this;
		while (d > 0) {
			if (d & 1) res *= pow2;
			pow2 *= pow2;
			d /= 2;
		}
		return res;
	}

	// 逆元
	mll inv() const { return pow(MOD - 2); }

	// 法の設定,確認
	static void set_mod(ll MOD_) { MOD = MOD_; }
	static ll mod() { return (ll)MOD; }

	// 値の確認
	ll val() const { return (ll)safe_mod(v); }
};
__int128 mll::MOD;


//【素数判定/ミラー - ラビン法】O((log n)^3)
/*
* n が素数かを返す.
*
* 利用:【有限体 F_p 上の計算(64 bit)】
*/
bool miller_rabin(ll n) {
	// 参考 : https://nyaannyaan.github.io/library/prime/fast-factorize.hpp.html

	//【方法】
	// p を奇素数とすると,任意の a=[1..p) についてフェルマーの小定理より
	//		a^(p-1) = 1 (mod p)
	// となる.これの平方根を考えていくと,
	//		p - 1 = 2^s d (d : 奇数)
	// と表せば,
	//		a^d = 1 (mod p) or ∃r=[0..s), a^(2^r d) = -1 (mod p)
	// と書き直せる.
	// 
	// この対偶を用いて判定することをランダムに選んだ a で繰り返す.
	// n の範囲を限定するなら擬素数を生じない a を固定的に選べる.

	const vl as = { 2, 325, 9375, 28178, 450775, 9780504, 1795265022 };

	if (n == 2 || n == 3 || n == 5 || n == 13 || n == 19 || n == 73 || n == 193
		|| n == 407521 || n == 299210837) return true;
	if (n == 1 || n % 2 == 0) return false;

	mll::set_mod(n);
	int s = 0; ll d = n - 1;
	while (d % 2 == 0) {
		s++;
		d /= 2;
	}

	repe(a, as) {
		mll powa = mll(a).pow(d);
		if (powa == 1 || powa == -1) goto LOOP_END;
		rep(r, s - 1) {
			powa *= powa;
			if (powa == 1) return false;
			if (powa == -1) goto LOOP_END;
		}
		return false;

	LOOP_END:;
	}

	return true;
}


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");

	string s;
	cin >> s;

	int n = sz(s);
	
	int res = 0;
	repb(set, n - 1) {
		ll val = 0, term = s[0] - '0';
		rep(i, n - 1) {
			if (set & (1 << i)) {
				val += term;
				term = s[i + 1] - '0';
			}
			else {
				term = term * 10 + s[i + 1] - '0';
			}
		}
		val += term;
		dump(val);

		if (miller_rabin(val)) res++;
	}

	cout << res << endl;
}
0