結果
問題 | No.1750 ラムドスウイルスの感染拡大-hard |
ユーザー | togatoga |
提出日時 | 2021-11-19 21:53:22 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 430 ms / 2,000 ms |
コード長 | 16,026 bytes |
コンパイル時間 | 25,991 ms |
コンパイル使用メモリ | 401,600 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-12-31 23:09:31 |
合計ジャッジ時間 | 20,282 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,820 KB |
testcase_01 | AC | 1 ms
6,816 KB |
testcase_02 | AC | 1 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 11 ms
6,824 KB |
testcase_05 | AC | 1 ms
6,816 KB |
testcase_06 | AC | 1 ms
6,816 KB |
testcase_07 | AC | 1 ms
6,820 KB |
testcase_08 | AC | 76 ms
6,820 KB |
testcase_09 | AC | 75 ms
6,816 KB |
testcase_10 | AC | 75 ms
6,816 KB |
testcase_11 | AC | 57 ms
6,816 KB |
testcase_12 | AC | 80 ms
6,820 KB |
testcase_13 | AC | 76 ms
6,816 KB |
testcase_14 | AC | 399 ms
6,816 KB |
testcase_15 | AC | 408 ms
6,816 KB |
testcase_16 | AC | 410 ms
6,820 KB |
testcase_17 | AC | 415 ms
6,820 KB |
testcase_18 | AC | 430 ms
6,820 KB |
testcase_19 | AC | 412 ms
6,816 KB |
testcase_20 | AC | 285 ms
6,820 KB |
testcase_21 | AC | 328 ms
6,816 KB |
testcase_22 | AC | 57 ms
6,816 KB |
testcase_23 | AC | 389 ms
6,816 KB |
testcase_24 | AC | 44 ms
6,820 KB |
testcase_25 | AC | 109 ms
6,820 KB |
testcase_26 | AC | 35 ms
6,816 KB |
testcase_27 | AC | 2 ms
6,820 KB |
testcase_28 | AC | 3 ms
6,816 KB |
testcase_29 | AC | 2 ms
6,820 KB |
testcase_30 | AC | 55 ms
6,820 KB |
testcase_31 | AC | 53 ms
6,816 KB |
testcase_32 | AC | 52 ms
6,816 KB |
testcase_33 | AC | 50 ms
6,816 KB |
ソースコード
use matrix::MatrixTrait;use crate::mod_int::ModInt998244353;pub mod utils {const DYX: [(isize, isize); 8] = [(0, 1),(1, 0),(0, -1),(-1, 0),(1, 1),(-1, 1),(1, -1),(-1, -1),];pub fn try_adj(y: usize, x: usize, dir: usize, h: usize, w: usize) -> Option<(usize, usize)> {let ny = y as isize + DYX[dir].0;let nx = x as isize + DYX[dir].1;if ny >= 0 && nx >= 0 && ny < h as isize && nx < w as isize {Some((ny as usize, nx as usize))} else {None}}}/// Modular Integer/// NOTE/// If a modular isn't prime, you can't div./// If you want to calculate a combination and permutation, you have to use `mod_comb`.pub mod mod_int {use std::marker::PhantomData;use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign};#[derive(Copy, Clone, Ord, PartialOrd, Eq, PartialEq, Hash, Debug)]pub struct Mod1000000007;#[derive(Copy, Clone, Ord, PartialOrd, Eq, PartialEq, Hash, Debug)]pub struct Mod998244353;pub trait Modulus: Copy + Eq + Copy {const VALUE: u32;}impl Modulus for Mod1000000007 {const VALUE: u32 = 1000000007;}impl Modulus for Mod998244353 {const VALUE: u32 = 998244353;}#[derive(Clone, Copy, Debug, PartialEq, Eq)]pub struct ModInt<T: Copy + Clone + Add + AddAssign + Mul + MulAssign + Sub + SubAssign,M: Modulus,> {pub val: T,phantom: std::marker::PhantomData<fn() -> M>,}/// Implementation macros#[warn(unused_macros)]macro_rules ! mod_int_impl {($ ($ t : ty ) * ) => ($ (impl < M : Modulus > ModInt <$ t , M > {pub fn new (x : $ t ) -> Self {ModInt {val : x % M:: VALUE as $ t , phantom : PhantomData } } pub fn pow (self , e : usize ) -> ModInt <$ t , M > {let mut result = ModInt ::<$ t , M >:: new(1 ) ; let mut cur = self ; let mut e = e ; while e > 0 {if e & 1 == 1 {result *= cur ; } cur *= cur ; e >>= 1 ; } result } } impl < M :Modulus > Add < ModInt <$ t , M >> for ModInt <$ t , M > {type Output = ModInt <$ t , M >; fn add (self , rhs : ModInt <$ t , M > ) -> ModInt<$ t , M > {self + rhs . val } } impl < M : Modulus > Add < ModInt <$ t , M >> for $ t {type Output = ModInt <$ t , M >; fn add (self , rhs :ModInt <$ t , M > ) -> ModInt <$ t , M > {let x = self % M :: VALUE as $ t ; let val = (x + rhs . val ) % M :: VALUE as $ t ; ModInt {val ,phantom : PhantomData } } } impl < M : Modulus > Add <$ t > for ModInt <$ t , M > {type Output = ModInt <$ t , M >; fn add (self , rhs : $ t) -> ModInt <$ t , M > {let x = rhs % M :: VALUE as $ t ; let val = (self . val + x ) % M :: VALUE as $ t ; ModInt {val , phantom :PhantomData } } } impl < M : Modulus > Sub < ModInt <$ t , M >> for ModInt <$ t , M > {type Output = ModInt <$ t , M >; fn sub (self , rhs :ModInt <$ t , M > ) -> ModInt <$ t , M > {self - rhs . val } } impl < M : Modulus > Sub < ModInt <$ t , M >> for $ t {type Output = ModInt <$t , M >; fn sub (self , rhs : ModInt <$ t , M > ) -> ModInt <$ t , M > {let val = self % M :: VALUE as $ t ; ModInt {val , phantom :PhantomData } - rhs } } impl < M : Modulus > Sub <$ t > for ModInt <$ t , M > {type Output = ModInt <$ t , M >; fn sub (self , rhs : $ t ) ->ModInt <$ t , M > {let rhs = if rhs >= M :: VALUE as $ t {rhs % M :: VALUE as $ t } else {rhs } ; let val = if self . val < rhs {self . val +M :: VALUE as $ t - rhs } else {self . val - rhs } ; ModInt {val , phantom : PhantomData } } } impl < M : Modulus > AddAssign < ModInt <$ t ,M >> for ModInt <$ t , M > {fn add_assign (& mut self , rhs : ModInt <$ t , M > ) {* self = * self + rhs ; } } impl < M : Modulus > AddAssign<$ t > for ModInt <$ t , M > {fn add_assign (& mut self , rhs : $ t ) {* self = * self + rhs ; } } impl < M : Modulus > SubAssign < ModInt <$t , M >> for ModInt <$ t , M > {fn sub_assign (& mut self , rhs : ModInt <$ t , M > ) {* self = * self - rhs ; } } impl < M : Modulus >SubAssign <$ t > for ModInt <$ t , M > {fn sub_assign (& mut self , rhs : $ t ) {* self = * self - rhs ; } } impl < M : Modulus > Div <$ t >for ModInt <$ t , M > {type Output = ModInt <$ t , M >; fn div (self , mut rhs : $ t ) -> ModInt <$ t , M > {if rhs >= M :: VALUE as $ t {rhs%= M :: VALUE as $ t ; } self * ModInt {val : rhs , phantom : PhantomData } . pow ((M :: VALUE - 2 ) as usize ) } } impl < M : Modulus > Div< ModInt <$ t , M >> for ModInt <$ t , M > {type Output = ModInt <$ t , M >; fn div (self , rhs : ModInt <$ t , M > ) -> ModInt <$ t , M >{self / rhs . val } } impl < M : Modulus > DivAssign <$ t > for ModInt <$ t , M > {fn div_assign (& mut self , rhs : $ t ) {* self = * self /rhs } } impl < M : Modulus > DivAssign < ModInt <$ t , M >> for ModInt <$ t , M > {fn div_assign (& mut self , rhs : ModInt <$ t , M > ) {*self = * self / rhs } } impl < M : Modulus > Mul < ModInt <$ t , M >> for ModInt <$ t , M > {type Output = ModInt <$ t , M >; fn mul (self ,rhs : ModInt <$ t , M > ) -> ModInt <$ t , M > {self * rhs . val } } impl < M : Modulus > Mul < ModInt <$ t , M >> for $ t {type Output =ModInt <$ t , M >; fn mul (self , rhs : ModInt <$ t , M > ) -> ModInt <$ t , M > {rhs * self } } impl < M : Modulus > Mul <$ t > for ModInt<$ t , M > {type Output = ModInt <$ t , M >; fn mul (self , rhs : $ t ) -> ModInt <$ t , M > {ModInt {val : self . val * (rhs % M :: VALUE as$ t ) % M :: VALUE as $ t , phantom : PhantomData } } } impl < M : Modulus > MulAssign < ModInt <$ t , M >> for ModInt <$ t , M > {fnmul_assign (& mut self , rhs : ModInt <$ t , M > ) {* self = * self * rhs ; } } impl < M : Modulus > MulAssign <$ t > for ModInt <$ t , M >{fn mul_assign (& mut self , rhs : $ t ) {* self = * self * rhs ; } } impl < M : Modulus > Default for ModInt <$ t , M > {fn default () ->ModInt <$ t , M > {ModInt {val : 0 , phantom : PhantomData } } } ) * ) }mod_int_impl ! (usize i64 u64 i128 );#[allow(dead_code)]pub type ModInt1000000007 = ModInt<i64, Mod1000000007>;pub type ModInt998244353 = ModInt<i64, Mod998244353>;}pub mod matrix {use std::ops::{Add, AddAssign, Mul, MulAssign, Sub, SubAssign};pub trait MatrixTrait: Default + Clone + Copy {}#[derive(Clone, Default, Debug)]pub struct Matrix<T> {data: Vec<T>,height: usize,width: usize,}impl<T: Default + Copy> Matrix<T> {pub fn new(h: usize, w: usize) -> Matrix<T> {assert!(h != 0 && w != 0);Matrix {data: vec![T::default(); h * w],height: h,width: w,}}pub fn width(&self) -> usize {self.width}pub fn height(&self) -> usize {self.height}pub fn get(&self, y: usize, x: usize) -> &T {&self.data[y * self.width + x]}pub fn get_mut(&mut self, y: usize, x: usize) -> &mut T {&mut self.data[y * self.width + x]}}impl<T: Default + Copy> From<Vec<Vec<T>>> for Matrix<T> {fn from(x: Vec<Vec<T>>) -> Self {let h = x.len();let w = x[0].len();let mut matrix = Matrix::new(h, w);for i in 0..h {for j in 0..w {*matrix.get_mut(i, j) = x[i][j];}}matrix}}impl<T: MatrixTrait + Mul<Output = T> + AddAssign + MulAssign> Matrix<T> {/// A^k/// O(hw^2logK)pub fn pow(&self, mut k: usize, one: T) -> Self {assert!(self.height() == self.width());let mut result = Self::new(self.height(), self.width());for i in 0..self.height() {*result.get_mut(i, i) = one;}let mut s = self.clone();while k > 0 {if k & 1 == 1 {result = result.dot(&s);}s = s.dot(&s);k >>= 1;}result}/// Matrix A*B = C/// (A.height, A.width) = (n1, m1)/// (B.height, B.width) = (n2, m2)/// (m1 == n2)/// multiple A by B and return a new matrix(n1, m2) C = A * B/// O(A.height * A.width * B.width)pub fn dot(&self, rhs: &Matrix<T>) -> Matrix<T> {assert!(self.width() == rhs.height());let mut matrix = Matrix::new(self.height(), rhs.width());for i in 0..self.height() {for k in 0..self.width() {for j in 0..rhs.width() {*matrix.get_mut(i, j) += *self.get(i, k) * *rhs.get(k, j);}}}matrix}/// A*dpub fn mul(&self, d: T) -> Matrix<T> {let mut matrix = self.clone();matrix.data.iter_mut().for_each(|x| *x *= d);matrix}/// A *= dpub fn mul_assign(&mut self, d: T) {self.data.iter_mut().for_each(|x| *x *= d);}}impl<T: MatrixTrait + Add<Output = T> + AddAssign> Matrix<T> {/// A + Bpub fn add_mat(&self, rhs: &Matrix<T>) -> Matrix<T> {assert!(self.height() == rhs.height() && self.width() == rhs.width());let data: Vec<_> = self.data.iter().zip(rhs.data.iter()).map(|(x, y)| *x + *y).collect();Matrix {data,height: self.height,width: self.width,}}/// A += Bpub fn add_mat_assign(&mut self, rhs: &Matrix<T>) {assert!(self.height() == rhs.height() && self.width() == rhs.width());self.data.iter_mut().zip(rhs.data.iter()).for_each(|(x, y)| *x += *y);}}impl<T: MatrixTrait + Sub<Output = T> + SubAssign> Matrix<T> {/// A - Bpub fn sub_mat(self, rhs: &Matrix<T>) -> Matrix<T> {assert!(self.height() == rhs.height() && self.width() == rhs.width());let data: Vec<_> = self.data.iter().zip(rhs.data.iter()).map(|(x, y)| *x - *y).collect();Matrix {data,height: self.height,width: self.width,}}/// A -= Bpub fn sub_mat_assign(&mut self, rhs: &Matrix<T>) {assert!(self.height() == rhs.height() && self.width() == rhs.width());self.data.iter_mut().zip(rhs.data.iter()).for_each(|(x, y)| *x -= *y);}}/// impl MatrixTrait for * {}impl MatrixTrait for i32 {}impl MatrixTrait for i64 {}impl MatrixTrait for i128 {}impl MatrixTrait for u32 {}impl MatrixTrait for u64 {}impl MatrixTrait for usize {}}impl MatrixTrait for ModInt998244353 {}#[derive(Default)]/// NOTE/// declare variables to reduce the number of parameters for dp and dfs etc.pub struct Solver {}impl Solver {pub fn solve(&mut self) {let stdin = std::io::stdin();let mut scn = fastio::Scanner::new(stdin.lock());let n: usize = scn.read();let m: usize = scn.read();let t: usize = scn.read();let mut mat = matrix::Matrix::new(n, n);for _ in 0..m {let s: usize = scn.read();let t: usize = scn.read();*mat.get_mut(s, t) = ModInt998244353::new(1);*mat.get_mut(t, s) = ModInt998244353::new(1);}let result = mat.pow(t, ModInt998244353::new(1));println!("{}", result.get(0, 0).val);}}pub mod fastio {use std::collections::VecDeque;use std::io::BufWriter;use std::io::Write;pub struct Writer<W: std::io::Write> {writer: std::io::BufWriter<W>,}impl<W: std::io::Write> Writer<W> {pub fn new(write: W) -> Writer<W> {Writer {writer: BufWriter::new(write),}}pub fn flush(&mut self) {self.writer.flush().unwrap();}pub fn write<S: std::string::ToString>(&mut self, s: S) {self.writer.write(s.to_string().as_bytes()).unwrap();}pub fn writeln<S: std::string::ToString>(&mut self, s: S) {self.write(s);self.write('\n');}}pub struct Scanner<R> {stdin: R,buffer: VecDeque<String>,}impl<R: std::io::BufRead> Scanner<R> {pub fn new(s: R) -> Scanner<R> {Scanner {stdin: s,buffer: VecDeque::new(),}}pub fn read<T: std::str::FromStr>(&mut self) -> T {while self.buffer.is_empty() {let line = self.read_line();for w in line.split_whitespace() {self.buffer.push_back(String::from(w));}}self.buffer.pop_front().unwrap().parse::<T>().ok().unwrap()}pub fn read_line(&mut self) -> String {let mut line = String::new();let _ = self.stdin.read_line(&mut line);line.trim_end().to_string()}pub fn vec<T: std::str::FromStr>(&mut self, n: usize) -> Vec<T> {(0..n).map(|_| self.read()).collect()}pub fn chars(&mut self) -> Vec<char> {self.read::<String>().chars().collect()}}}pub mod macros {#[macro_export]#[allow(unused_macros)]macro_rules ! max {($ x : expr ) => ($ x ) ; ($ x : expr , $ ($ y : expr ) ,+ ) => {std :: cmp :: max ($ x , max ! ($ ($ y ) ,+ ) ) } }#[macro_export]#[allow(unused_macros)]macro_rules ! min {($ x : expr ) => ($ x ) ; ($ x : expr , $ ($ y : expr ) ,+ ) => {std :: cmp :: min ($ x , min ! ($ ($ y ) ,+ ) ) } }#[macro_export]#[allow(unused_macros)]/// Display a line of variablesmacro_rules ! echo {() => {{use std :: io :: {self , Write } ; writeln ! (io :: stderr () , "{}:" , line ! () ) . unwrap () ; } } ; ($ e : expr ,$ ($ es : expr ) ,+ $ (, ) ? ) => {{use std :: io :: {self , Write } ; write ! (io :: stderr () , "{}:" , line ! () ) . unwrap () ; write !(io :: stderr () , " {} = {:?}" , stringify ! ($ e ) , $ e ) . unwrap () ; $ (write ! (io :: stderr () , " {} = {:?}" , stringify ! ($ es ) ,$ es ) . unwrap () ; ) + writeln ! (io :: stderr () ) . unwrap () ; } } ; ($ e : expr ) => {{use std :: io :: {self , Write } ; let result =$ e ; writeln ! (io :: stderr () , "{}: {} = {:?}" , line ! () , stringify ! ($ e ) , result ) . unwrap () ; result } } ; }#[macro_export]#[allow(unused_macros)]/// Display a line of variables with colorsmacro_rules ! cecho {() => {{use std :: io :: {self , Write } ; writeln ! (io :: stderr () , "\x1b[31;1m{}\x1b[m:" , line ! () ) . unwrap () ; }} ; ($ e : expr , $ ($ es : expr ) ,+ $ (, ) ? ) => {{use std :: io :: {self , Write } ; write ! (io :: stderr () , "\x1b[31;1m{}\x1b[m:" ,line ! () ) . unwrap () ; write ! (io :: stderr () , " \x1b[92;1m{}\x1b[m = {:?}" , stringify ! ($ e ) , $ e ) . unwrap () ; $ (write ! (io:: stderr () , " \x1b[92;1m{}\x1b[m = {:?}" , stringify ! ($ es ) , $ es ) . unwrap () ; ) + writeln ! (io :: stderr () ) . unwrap () ; } } ;($ e : expr ) => {{use std :: io :: {self , Write } ; let result = $ e ; writeln ! (io :: stderr () , "\x1b[31;1m{}\x1b[m: \x1b[92;1m{}\x1b[m= {:?}" , line ! () , stringify ! ($ e ) , result ) . unwrap () ; result } } ; }}fn main() {std::thread::Builder::new().stack_size(64 * 1024 * 1024).spawn(|| Solver::default().solve()).unwrap().join().unwrap();}