結果
問題 | No.1753 Don't cheat. |
ユーザー |
|
提出日時 | 2021-11-19 22:03:56 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 2,433 ms / 3,000 ms |
コード長 | 2,406 bytes |
コンパイル時間 | 231 ms |
コンパイル使用メモリ | 82,452 KB |
実行使用メモリ | 85,560 KB |
最終ジャッジ日時 | 2025-01-01 17:48:57 |
合計ジャッジ時間 | 80,630 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 30 |
ソースコード
N = 2*10**5mod = 998244353g1 = [1]*(N+1) # 元テーブルg2 = [1]*(N+1) #逆元テーブルinverse = [1]*(N+1) #逆元テーブル計算用テーブルfor i in range( 2, N + 1 ):g1[i]=( ( g1[i-1] * i ) % mod )inverse[i]=( ( -inverse[mod % i] * (mod//i) ) % mod )g2[i]=( (g2[i-1] * inverse[i]) % mod )inverse[0]=0def cmb(n, r, mod):if ( r<0 or r>n ):return 0r = min(r, n-r)return g1[n] * g2[r] * g2[n-r] % moddef fwt(n,A):assert len(A) == 2**nfor i in range(n):t = 2**ifor j in range(2**n):if j&t==0:A[j] += A[j|t]return Adef ifwt(n,A):assert len(A) == 2**nfor i in range(n):t = 2**ifor j in range(2**n):if j&t==0:A[j] -= A[j|t]return Ainv = pow(1024,mod-2,mod)def _fourier(f, inverse = False):f = f[:]n = (len(f) - 1).bit_length()for d in range(n):for U in range(1 << n):if not U >> d & 1:s, t = f[U], f[U | 1 << d]f[U], f[U | 1 << d] = (s + t)%mod, (s - t)%modif inverse:f = [v *inv % mod for v in f]return fdef convolution(f, g):return _fourier([a * b % mod for a, b in zip(_fourier(f), _fourier(g))], inverse = 1)import sys,random,bisectfrom collections import deque,defaultdictfrom heapq import heapify,heappop,heappushfrom itertools import permutationsfrom math import log,gcdinput = lambda :sys.stdin.readline()mi = lambda :map(int,input().split())li = lambda :list(mi())N = int(input())A = li()S = sum(A)P = [A[i]*pow(S,mod-2,mod)%mod for i in range(N+1)] + [0] * (1023-N)res = P[0]for i in range(1,1024):f = [0] + [P[j] for j in range(1,1024)]g = [f[j] for j in range(1024)]g[i] = 0af = _fourier(f)ag = _fourier(g)for j in range(1024):af[j] = af[j] * pow(1-af[j],mod-2,mod) % modag[j] = ag[j] * pow(1-ag[j],mod-2,mod) % modtmp = _fourier([af[i]-ag[i] for i in range(1024)],True)#print(f,g)#print([f[i]*30 % mod for i in range(4)])res += P[0] * tmp[i] % modres %= modf = [0] + [P[j] for j in range(1,1024)]af = _fourier(f)for j in range(1024):af[j] = af[j] * pow(1-af[j],mod-2,mod) % modag[j] = ag[j] * pow(1-ag[j],mod-2,mod) % modf = _fourier(af,True)res += P[0] * f[0] % modres %= modprint((1-res)%mod)