結果
問題 | No.1750 ラムドスウイルスの感染拡大-hard |
ユーザー | bt yamato |
提出日時 | 2021-11-19 22:40:17 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,900 ms / 2,000 ms |
コード長 | 9,660 bytes |
コンパイル時間 | 1,706 ms |
コンパイル使用メモリ | 180,776 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-06-10 09:54:59 |
合計ジャッジ時間 | 19,573 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,816 KB |
testcase_01 | AC | 1 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 1 ms
6,940 KB |
testcase_04 | AC | 38 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 177 ms
6,940 KB |
testcase_09 | AC | 153 ms
6,940 KB |
testcase_10 | AC | 182 ms
6,944 KB |
testcase_11 | AC | 192 ms
6,940 KB |
testcase_12 | AC | 286 ms
6,940 KB |
testcase_13 | AC | 280 ms
6,944 KB |
testcase_14 | AC | 1,802 ms
6,944 KB |
testcase_15 | AC | 1,874 ms
6,948 KB |
testcase_16 | AC | 1,900 ms
6,948 KB |
testcase_17 | AC | 1,332 ms
6,940 KB |
testcase_18 | AC | 1,199 ms
6,944 KB |
testcase_19 | AC | 1,212 ms
6,940 KB |
testcase_20 | AC | 1,045 ms
6,940 KB |
testcase_21 | AC | 1,539 ms
6,940 KB |
testcase_22 | AC | 250 ms
6,944 KB |
testcase_23 | AC | 1,784 ms
6,944 KB |
testcase_24 | AC | 187 ms
6,944 KB |
testcase_25 | AC | 426 ms
6,944 KB |
testcase_26 | AC | 146 ms
6,944 KB |
testcase_27 | AC | 4 ms
6,940 KB |
testcase_28 | AC | 9 ms
6,944 KB |
testcase_29 | AC | 4 ms
6,944 KB |
testcase_30 | AC | 250 ms
6,940 KB |
testcase_31 | AC | 238 ms
6,940 KB |
testcase_32 | AC | 230 ms
6,940 KB |
testcase_33 | AC | 222 ms
6,944 KB |
ソースコード
#include<bits/stdc++.h> #define REP(i,n) for(int i=0,i##_len=int(n);i<i##_len;++i) #define rep(i,a,b) for(int i=int(a);i<int(b);++i) #define All(x) (x).begin(),(x).end() #define rAll(x) (x).rbegin(),(x).rend() using namespace std; using ll = long long; constexpr ll mod = 998244353; class mint { private: ll _num,_mod = mod; mint set(ll num){ _num = num ; if(_num<0){ if(_num>=-_mod)_num=_mod+_num; else _num=_mod-(-_num)%_mod; } else if(_num>=_mod) _num%=_mod; return *this; } ll imod()const{ ll n=_mod-2; ll ans = 1,x=_num; while(n != 0){ if(n&1) ans = ans*x%_mod; x = x*x%_mod; n = n >> 1; } return ans; } public: explicit mint(){ _num = 0; } explicit mint(ll num){ _num = num; if(_num<0){ if(_num>=-_mod)_num=_mod+_num; else _num=_mod-(-_num)%_mod; } else if(_num>=_mod) _num%=_mod; } explicit mint(ll num,ll M){ _mod=M; _num=num; if(_num<0){ if(_num>=-_mod)_num=_mod+_num; else _num=_mod-(-_num)%_mod; } else if(_num>=_mod) _num%=_mod; } mint(const mint &cp){_num=cp._num;_mod=cp._mod;} mint operator+ (const mint &x)const{ return mint(_num + x._num , _mod); } mint operator- (const mint &x)const{ return mint(_num - x._num , _mod);} mint operator* (const mint &x)const{ return mint(_num * x._num , _mod); } mint operator/ (const mint &x)const{ return mint(_num * x.imod() , _mod);} mint operator+=(const mint &x){ return set(_num + x._num); } mint operator-=(const mint &x){ return set(_num - x._num); } mint operator*=(const mint &x){ return set(_num * x._num); } mint operator/=(const mint &x){ return set(_num * x.imod());} mint operator= (const ll x){ return set(x); } mint operator+ (const ll x)const{return *this + mint(x,_mod); } mint operator- (const ll x)const{ return *this - mint(x,_mod); } mint operator* (const ll x)const{ return *this * mint(x,_mod); } mint operator/ (const ll x)const{ return *this/mint(x, _mod);} mint operator+=(const ll x){ *this = *this + x;return *this; } mint operator-=(const ll x){ *this = *this - x;return *this; } mint operator*=(const ll x){ *this = *this * x;return *this;} mint operator/=(const ll x){ *this = *this / x;return *this;} bool operator==(const mint &x)const{return _num==x._num;} bool operator!=(const mint &x)const{return _num!=x._num;} friend mint operator+(ll x,const mint &m){return mint(m._num + x , m._mod);} friend mint operator-(ll x,const mint &m){return mint( x - m._num , m._mod);} friend mint operator*(ll x,const mint &m){return mint(m._num * (x % m._mod) , m._mod);} friend mint operator/(ll x,const mint &m){return mint(m.imod() * (x % m._mod) , m._mod);} explicit operator ll() { return _num; } explicit operator int() { return (int)_num; } friend std::ostream& operator<<(std::ostream &os, const mint &x){ os << x._num; return os; } friend std::istream& operator>>(std::istream &is, mint &x){ll val; is>>val; x.set(val); return is;} }; template<typename T> class MAT{ private: int row,col; vector<vector<T>> _A; double eps = 1e-9; MAT set(vector<vector<T>> A){_A = A ; return *this;} public: MAT(){ } MAT(int n,int m=0,T x=T(0)){ if(n<1 || m<0){cout << "err Matrix::Matrix" <<endl;exit(1);} row = n; col = m?m:n;//return E if m=0 REP(i,row){ vector<T> a(col,x); _A.push_back(a); } if(m==0) REP(i,n) _A[i][i]=1.0; } MAT(vector<vector<T>> A){row=A.size();col=A[0].size();_A=A;} MAT(const MAT &cp){_A=cp._A;row=cp.row;col=cp.col;} T* operator[] (int i){return _A[i].data();} MAT operator= (vector<vector<T>> x) {return set(x);} MAT operator+ (MAT x) const { if(row!=x.row || col!=x.col){ cerr << "err Matrix::operator+" <<endl; cerr << " not equal matrix size" <<endl; exit(0); } MAT r(row, col); REP(i,row) REP(j,col) r[i][j]=_A[i][j]+x[i][j]; return r; } MAT operator- (MAT x) const { if(row!=x.row || col!=x.col){ cerr << "err Matrix::operator-" <<endl; cerr << " not equal matrix size" <<endl; exit(0); } MAT r(row, col); REP(i,row) REP(j,col) r[i][j]=_A[i][j]-x[i][j]; return r; } MAT operator* (MAT x) const { if(x.col==1&&x.row==1) return x[0][0]*MAT(_A); if(row==1&&col==1) return _A[0][0]*x; if(col!=x.row){ cerr << "err Matrix::operator*" <<endl; cerr << " not equal matrix size" <<endl; exit(0); } MAT r(row, x.col); REP(i,row) REP(j,x.col) REP(k,col) r[i][j]+=_A[i][k]*x[k][j]; return r; } MAT operator/(MAT x)const{*this = *this * x.inverse(); return *this;} MAT operator/ (T a)const{ MAT r(row,col); REP(i,row) REP(j,col) r[i][j]=_A[i][j]/a; return r; } MAT operator+= (MAT x) {*this = *this + x;return *this;} MAT operator-= (MAT x) {*this = *this - x; return *this;} MAT operator*=(T a){*this = a*(*this); return this;} MAT operator/=(MAT x){*this = *this/x;return *this;} MAT operator/=(T a){*this = *this/a; return *this;} friend MAT operator* (T n,MAT x){ MAT r(x.row,x.col); REP(i,x.row) REP(j,x.col) r[i][j]=n*x[i][j]; return r; } friend MAT operator* (MAT x,T n){ MAT r(x.row,x.col); REP(i,x.row) REP(j,x.col) r[i][j]=n*x[i][j]; return r; } explicit operator vector<vector<T>>(){return _A;} friend ostream &operator<<(ostream &os,const MAT &x){ REP(i,x.row) REP(j,x.col) os<<x._A[i][j]<<" \n"[j==x.col-1]; return os;} friend istream &operator>>(istream &is,MAT &x){REP(i,x.row) REP(j,x.col) is>>x._A[i][j];return is;} size_t size_row()const{return row;} size_t size_col()const{return col;} MAT transpose()const{ MAT r(col,row); REP(i,col) REP(j,row) r[i][j]=_A[j][i]; return r; } MAT inverse()const{ T buf; MAT<T> inv_a(row,0); vector<vector<T>> a=_A; //row reduction REP(i,row){ buf=1/a[i][i]; REP(j,row){ a[i][j]*=buf; inv_a[i][j]*=buf; } REP(j,row){ if(i!=j){ buf=a[j][i]; REP(k,row){ a[j][k]-=a[i][k]*buf; inv_a[j][k]-=inv_a[i][k]*buf; } } } } return inv_a; } MAT Jacobi(MAT b)const{//ヤコビ法によって解を求める size_t sz=row; MAT D(sz,sz),inD(sz,sz),H(sz,sz),N(sz,sz); MAT c(sz,1),x(sz,1),tmp(sz,1); //cout<<"initialized"<<endl; REP(i,sz){//値の初期化、Aを対角要素とそれ以外に分解する(できてる) REP(j,sz){ H[i][j] = 0; if(i==j){ D[i][j] = _A[i][j]; inD[i][j] = 1/_A[i][j]; N[i][j]=0; } else if(i!=j){ D[i][j] = 0; inD[i][j] = 0; N[i][j]=_A[i][j]; } } c[i][0] = 0; x[i][0] = 1; } c=inD*b; H=inD*N; while(1){//反復法ステップ1→2→1... tmp=x; x=c-H*x; T r=T(0); for(int i=0;i<row;++i){ r+=(x[i][0]-tmp[i][0])*(x[i][0]-tmp[i][0]); } if(r<eps) break; } return x; } MAT Gauss(MAT b)const{//ガウス・ザイデル法によって解を求める MAT<T> DL(row),U(row),inDL(row),H(row),c(row,1),x(row,1),tmp(row,1); for(int i=0;i<row;i++){ for(int j=0;j<col;j++){ H[i][j] = 0; if(i>=j){ DL[i][j] = _A[i][j]; U[i][j] = 0; } else{ DL[i][j] = 0; U[i][j] = _A[i][j]; } } x[i][0] = 1; } inDL=DL.inverse(); c=inDL*b; H=inDL*U; int n=0; while(1){ tmp=x; x=c-H*x; T r = T(0); for(int i=0;i<row;++i){ r+=(x[i][0]-tmp[i][0])*(x[i][0]-tmp[i][0]); } n++; if(r<eps) break; } return x; } int rank()const{// O( n^3 ) vector<vector<T>> A=_A; const int n = row, m = col; int r = 0; for(int i = 0; r < n && i < m; ++i) { int pivot = r; for(int j = r+1; j < n; ++j) if(fabs(A[j][i]) > fabs(A[pivot][i])) pivot = j; swap(A[pivot], A[r]); if(fabs(A[r][i]) < eps) continue; for (int k = m-1; k >= i; --k) A[r][k] /= A[r][i]; rep(j,r+1,n) rep(k,i,m) A[j][k] -= A[r][k] * A[j][i]; ++r; } return r; } }; template<typename T> T npow(T x, ll n){ T ans(x.size_col()); while(n != 0){ if(n&1) ans = ans*x; x = x*x; n = n >> 1; } return ans; } int main(){ ll N,M,T; cin>>N>>M>>T; assert(N <= 100); MAT<mint> A(N,N), ans(N,1); REP(i,M) { int s,t; cin>>s>>t; A[s][t] = A[t][s] = 1; } ans[0][0] = 1; ans = npow(A,T)*ans; cout << ans[0][0] <<endl; }