結果
問題 | No.1751 Fortune Nim |
ユーザー |
👑 ![]() |
提出日時 | 2021-11-19 23:00:41 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 25 ms / 2,000 ms |
コード長 | 9,249 bytes |
コンパイル時間 | 3,504 ms |
コンパイル使用メモリ | 202,432 KB |
最終ジャッジ日時 | 2025-01-25 20:50:10 |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 30 |
ソースコード
#define _USE_MATH_DEFINES#include <bits/stdc++.h>using namespace std;#define FOR(i,m,n) for(int i=(m);i<(n);++i)#define REP(i,n) FOR(i,0,n)#define ALL(v) (v).begin(),(v).end()using ll = long long;constexpr int INF = 0x3f3f3f3f;constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;constexpr double EPS = 1e-8;constexpr int MOD = 998244353;constexpr int DY[]{1, 0, -1, 0}, DX[]{0, -1, 0, 1};constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}, DX8[]{0, -1, -1, -1, 0, 1, 1, 1};template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }struct IOSetup {IOSetup() {std::cin.tie(nullptr);std::ios_base::sync_with_stdio(false);std::cout << fixed << setprecision(20);}} iosetup;template <int M>struct MInt {unsigned int val;MInt(): val(0) {}MInt(long long x) : val(x >= 0 ? x % M : x % M + M) {}static constexpr int get_mod() { return M; }static void set_mod(int divisor) { assert(divisor == M); }static void init(int x = 10000000) { inv(x, true); fact(x); fact_inv(x); }static MInt inv(int x, bool init = false) {// assert(0 <= x && x < M && std::__gcd(x, M) == 1);static std::vector<MInt> inverse{0, 1};int prev = inverse.size();if (init && x >= prev) {// "x!" and "M" must be disjoint.inverse.resize(x + 1);for (int i = prev; i <= x; ++i) inverse[i] = -inverse[M % i] * (M / i);}if (x < inverse.size()) return inverse[x];unsigned int a = x, b = M; int u = 1, v = 0;while (b) {unsigned int q = a / b;std::swap(a -= q * b, b);std::swap(u -= q * v, v);}return u;}static MInt fact(int x) {static std::vector<MInt> f{1};int prev = f.size();if (x >= prev) {f.resize(x + 1);for (int i = prev; i <= x; ++i) f[i] = f[i - 1] * i;}return f[x];}static MInt fact_inv(int x) {static std::vector<MInt> finv{1};int prev = finv.size();if (x >= prev) {finv.resize(x + 1);finv[x] = inv(fact(x).val);for (int i = x; i > prev; --i) finv[i - 1] = finv[i] * i;}return finv[x];}static MInt nCk(int n, int k) {if (n < 0 || n < k || k < 0) return 0;if (n - k > k) k = n - k;return fact(n) * fact_inv(k) * fact_inv(n - k);}static MInt nPk(int n, int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); }static MInt nHk(int n, int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); }static MInt large_nCk(long long n, int k) {if (n < 0 || n < k || k < 0) return 0;inv(k, true);MInt res = 1;for (int i = 1; i <= k; ++i) res *= inv(i) * n--;return res;}MInt pow(long long exponent) const {MInt tmp = *this, res = 1;while (exponent > 0) {if (exponent & 1) res *= tmp;tmp *= tmp;exponent >>= 1;}return res;}MInt &operator+=(const MInt &x) { if((val += x.val) >= M) val -= M; return *this; }MInt &operator-=(const MInt &x) { if((val += M - x.val) >= M) val -= M; return *this; }MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % M; return *this; }MInt &operator/=(const MInt &x) { return *this *= inv(x.val); }bool operator==(const MInt &x) const { return val == x.val; }bool operator!=(const MInt &x) const { return val != x.val; }bool operator<(const MInt &x) const { return val < x.val; }bool operator<=(const MInt &x) const { return val <= x.val; }bool operator>(const MInt &x) const { return val > x.val; }bool operator>=(const MInt &x) const { return val >= x.val; }MInt &operator++() { if (++val == M) val = 0; return *this; }MInt operator++(int) { MInt res = *this; ++*this; return res; }MInt &operator--() { val = (val == 0 ? M : val) - 1; return *this; }MInt operator--(int) { MInt res = *this; --*this; return res; }MInt operator+() const { return *this; }MInt operator-() const { return MInt(val ? M - val : 0); }MInt operator+(const MInt &x) const { return MInt(*this) += x; }MInt operator-(const MInt &x) const { return MInt(*this) -= x; }MInt operator*(const MInt &x) const { return MInt(*this) *= x; }MInt operator/(const MInt &x) const { return MInt(*this) /= x; }friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; }friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; }};namespace std { template <int M> MInt<M> abs(const MInt<M> &x) { return x; } }using ModInt = MInt<MOD>;template <typename T = long long>struct Rational {T num, den;Rational(): num(0), den(1) {}Rational(T num, T den = 1) : num(num), den(den) { assert(den != 0); reduce(); }template <typename Real = long double> Real to_real() const { return static_cast<Real>(num) / den; }Rational &operator+=(const Rational &x) {T g = std::__gcd(den, x.den);num = num * (x.den / g) + x.num * (den / g); den *= x.den / g;reduce();return *this;}Rational &operator-=(const Rational &x) { return *this += -x; }Rational &operator*=(const Rational &x) {T g1 = std::__gcd(num, x.den), g2 = std::__gcd(den, x.num);num = (num / g1) * (x.num / g2); den = (den / g2) * (x.den / g1);reduce();return *this;}Rational &operator/=(const Rational &x) { return *this *= Rational(x.den, x.num); }bool operator==(const Rational &x) const { return num == x.num && den == x.den; }bool operator!=(const Rational &x) const { return !(*this == x); }bool operator<(const Rational &x) const { return (x - *this).num > 0; }bool operator<=(const Rational &x) const { return !(x < *this); }bool operator>(const Rational &x) const { return x < *this; }bool operator>=(const Rational &x) const { return !(*this < x); }Rational &operator++() { if ((num += den) == 0) den = 1; return *this; }Rational operator++(int) { Rational res = *this; ++*this; return res; }Rational &operator--() { if ((num -= den) == 0) den = 1; return *this; }Rational operator--(int) { Rational res = *this; --*this; return res; }Rational operator+() const { return *this; }Rational operator-() const { return Rational(-num, den); }Rational operator+(const Rational &x) const { return Rational(*this) += x; }Rational operator-(const Rational &x) const { return Rational(*this) -= x; }Rational operator*(const Rational &x) const { return Rational(*this) *= x; }Rational operator/(const Rational &x) const { return Rational(*this) /= x; }friend std::ostream &operator<<(std::ostream &os, const Rational &x) {if (x.den == 1) return os << x.num;return os << x.num << '/' << x.den;}private:void reduce() { T g = std::__gcd(num, den); num /= g; den /= g; if (den < 0) { num = -num; den = -den; } }};namespace std {template <typename T> Rational<T> abs(const Rational<T> &x) {Rational<T> res = x; if (res.num < 0) res.num = -res.num; return res; }template <typename T> Rational<T> max(const Rational<T> &a, const Rational<T> &b) { return a < b ? b : a; }template <typename T> Rational<T> min(const Rational<T> &a, const Rational<T> &b) { return a < b ? a : b; }template <typename T> struct numeric_limits<Rational<T>> {static constexpr Rational<T> max() { return std::numeric_limits<T>::max(); }static constexpr Rational<T> lowest() { return std::numeric_limits<T>::lowest(); }};} // stdll p3(int n) {ll res = 1;while (n--) res *= 3;return res;}int main() {using rational = Rational<>;map<multiset<int>, rational> dp;auto f = [&](auto&& f, const multiset<int>& a) -> rational {if (dp.count(a) == 1) return dp[a];rational& r = dp[a];if (a.size() == 1) return r = rational(2, 3);multiset<int> b = a;for (const int ai : a) {b.erase(b.lower_bound(ai));chmax(r, (-f(f, b) + 2) / 3);FOR(na, 1, ai) {b.emplace(na);chmax(r, (-f(f, b) + 2) / 3);b.erase(b.lower_bound(na));}b.emplace(ai);}int x = 0;for (int ai : a) x ^= ai;if (x == 0) {assert(r.den == p3(accumulate(ALL(a), 0)));} else {pair<int, int> rem{0, 0};for (int ai : a) {if ((x ^ ai) <= ai) {chmax(rem, make_pair(ai - (x ^ ai), ai));}}for (int ai : a) {if (ai == rem.second) {b.erase(b.lower_bound(ai));if (rem.first < ai) b.emplace(ai - rem.first);assert(f(f, b).den * 3 == r.den);break;}}}return r;};auto nth = [](const ll n) -> ModInt {return (ModInt::inv(ModInt(3).pow(n).val) * (n % 2 == 0 ? -1 : 1) + 1) / 2;};int n; cin >> n;if (n == 1) {cout << ModInt(2) / 3 << '\n';return 0;}vector<int> a(n); REP(i, n) cin >> a[i];int x = 0;REP(i, n) x ^= a[i];if (x == 0) {cout << nth(accumulate(ALL(a), 0LL)) << '\n';} else {int remove = 0;REP(i, n) {if ((x ^ a[i]) <= a[i]) chmax(remove, a[i] - (x ^ a[i]));}cout << nth(accumulate(ALL(a), 0LL) - remove + 1) << '\n';}return 0;}