結果

問題 No.1750 ラムドスウイルスの感染拡大-hard
ユーザー 🍮かんプリン🍮かんプリン
提出日時 2021-11-20 00:11:56
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 318 ms / 2,000 ms
コード長 6,993 bytes
コンパイル時間 1,951 ms
コンパイル使用メモリ 175,444 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-06-10 11:59:51
合計ジャッジ時間 6,034 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 2 ms
6,944 KB
testcase_04 AC 9 ms
6,944 KB
testcase_05 AC 2 ms
6,944 KB
testcase_06 AC 2 ms
6,944 KB
testcase_07 AC 2 ms
6,940 KB
testcase_08 AC 56 ms
6,944 KB
testcase_09 AC 57 ms
6,944 KB
testcase_10 AC 56 ms
6,940 KB
testcase_11 AC 44 ms
6,944 KB
testcase_12 AC 60 ms
6,940 KB
testcase_13 AC 56 ms
6,940 KB
testcase_14 AC 297 ms
6,940 KB
testcase_15 AC 303 ms
6,940 KB
testcase_16 AC 308 ms
6,940 KB
testcase_17 AC 309 ms
6,944 KB
testcase_18 AC 318 ms
6,940 KB
testcase_19 AC 304 ms
6,940 KB
testcase_20 AC 213 ms
6,940 KB
testcase_21 AC 237 ms
6,940 KB
testcase_22 AC 43 ms
6,944 KB
testcase_23 AC 288 ms
6,944 KB
testcase_24 AC 33 ms
6,940 KB
testcase_25 AC 79 ms
6,940 KB
testcase_26 AC 27 ms
6,940 KB
testcase_27 AC 3 ms
6,940 KB
testcase_28 AC 3 ms
6,940 KB
testcase_29 AC 2 ms
6,944 KB
testcase_30 AC 43 ms
6,940 KB
testcase_31 AC 39 ms
6,940 KB
testcase_32 AC 39 ms
6,940 KB
testcase_33 AC 37 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

/**
 *   @FileName	a.cpp
 *   @Author	kanpurin
 *   @Created	2021.11.20 00:11:47
**/

#include "bits/stdc++.h" 
using namespace std; 
typedef long long ll;


template< int MOD >
struct mint {
public:
    unsigned int x;
    mint() : x(0) {}
    mint(long long v) {
        long long w = (long long)(v % (long long)(MOD));
        if (w < 0) w += MOD;
        x = (unsigned int)(w);
    }
    mint(std::string &s) {
        unsigned int z = 0;
        for (int i = 0; i < s.size(); i++) {
            z *= 10;
            z += s[i] - '0';
            z %= MOD;
        }
        x = z;
    }
    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }
    mint& operator+=(const mint &a) {
        if ((x += a.x) >= MOD) x -= MOD;
        return *this;
    }
    mint& operator-=(const mint &a) {
        if ((x -= a.x) >= MOD) x += MOD;
        return *this;
    }
    mint& operator*=(const mint &a) {
        unsigned long long z = x;
        z *= a.x;
        x = (unsigned int)(z % MOD);
        return *this;
    }
    mint& operator/=(const mint &a) {return *this = *this * a.inv(); }
    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs.x == rhs.x;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs.x != rhs.x;
    }
    friend std::ostream& operator<<(std::ostream &os, const mint &n) {
        return os << n.x;
    }
    friend std::istream &operator>>(std::istream &is, mint &n) {
        unsigned int x;
        is >> x;
        n = mint(x);
        return is;
    }
    mint inv() const {
        assert(x);
        return pow(MOD-2);
    }
    mint pow(long long n) const {        
        assert(0 <= n);
        mint p = *this, r = 1;
        while (n) {
            if (n & 1) r *= p;
            p *= p;
            n >>= 1;
        }
        return r;
    }
    
    mint sqrt() const {
        if (this->x < 2) return *this;
        if (this->pow((MOD-1)>>1).x != 1) return mint(0);
        mint b = 1, one = 1;
        while (b.pow((MOD-1) >> 1) == 1) b += one;
        long long m = MOD-1, e = 0;
        while (m % 2 == 0) m >>= 1, e += 1;
        mint x = this->pow((m - 1) >> 1);
        mint y = (*this) * x * x;
        x *= (*this);
        mint z = b.pow(m);
        while (y.x != 1) {
            int j = 0;
            mint t = y;
            while (t != one) j += 1, t *= t;
            z = z.pow(1LL << (e-j-1));
            x *= z; z *= z; y *= z; e = j;
        }
        return x;
    }
};

constexpr int MOD = 998244353;

template< class T >
struct Matrix {
    std::vector< std::vector< T > > A;

    Matrix() {}

    Matrix(size_t n, size_t m) : A(n, std::vector< T >(m, 0)) {}

    Matrix(size_t n) : A(n, std::vector< T >(n, 0)) {};

    size_t height() const {
        return (A.size());
    }

    size_t width() const {
        return (A[0].size());
    }

    inline const std::vector< T > &operator[](int k) const {
        return (A.at(k));
    }

    inline std::vector< T > &operator[](int k) {
        return (A.at(k));
    }

    static Matrix I(size_t n) {
        Matrix mat(n);
        for (int i = 0; i < n; i++) mat[i][i] = 1;
        return (mat);
    }

    Matrix &operator+=(const Matrix &B) {
        size_t n = height(), m = width();
        assert(n == B.height() && m == B.width());
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
                (*this)[i][j] += B[i][j];
        return (*this);
    }

    Matrix &operator-=(const Matrix &B) {
        size_t n = height(), m = width();
        assert(n == B.height() && m == B.width());
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
                (*this)[i][j] -= B[i][j];
        return (*this);
    }

    Matrix &operator*=(const Matrix &B) {
        size_t n = height(), m = B.width(), p = width();
        assert(p == B.height());
        std::vector< std::vector< T > > C(n, std::vector< T >(m, 0));
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
                for (int k = 0; k < p; k++)
                    C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
        A.swap(C);
        return (*this);
    }

    Matrix operator+(const Matrix &B) const {
        return (Matrix(*this) += B);
    }

    Matrix operator-(const Matrix &B) const {
        return (Matrix(*this) -= B);
    }

    Matrix operator*(const Matrix &B) const {
        return (Matrix(*this) *= B);
    }

    bool operator==(const Matrix &B) const {
        assert(this->A.size() == B.A.size() && this->A[0].size() == B.A[0].size());
        int n = this->A.size();
        int m = this->A[0].size();
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
                if (this->A[i][j] != B.A[i][j]) return false;
        return true;
    }

    bool operator!=(const Matrix &B) const {
        return !(*this == B);
    }

    friend std::ostream &operator<<(std::ostream &os, Matrix &p) {
        size_t n = p.height(), m = p.width();
        for (int i = 0; i < n; i++) {
            os << "[";
            for (int j = 0; j < m; j++) {
                os << p[i][j] << (j + 1 == m ? "]\n" : ",");
            }
        }
        return (os);
    }
    T determinant() {
        Matrix B(*this);
        assert(width() == height());
        T ret = 1;
        for (int i = 0; i < width(); i++) {
            int idx = -1;
            for (int j = i; j < width(); j++) {
                if (B[j][i] != 0) idx = j;
            }
            if (idx == -1) return (0);
            if (i != idx) {
                ret *= -1;
                swap(B[i], B[idx]);
            }
            ret *= B[i][i];
            T vv = B[i][i];
            for (int j = 0; j < width(); j++) {
                B[i][j] /= vv;
            }
            for (int j = i + 1; j < width(); j++) {
                T a = B[j][i];
                for (int k = 0; k < width(); k++) {
                    B[j][k] -= B[i][k] * a;
                }
            }
        }
        return (ret);
    }

    Matrix pow(ll k) const {
        auto res = I(A.size());
        auto M = *this;
        while (k > 0) {
            if (k & 1) {
                res *= M;
            }
            M *= M;
            k >>= 1;
        }
        return res;
    }
};

int main() {
    int n,m;ll t;cin >> n >> m >> t;
    Matrix<mint<MOD>> mat(n);
    for (int i = 0; i < m; i++) {
        int s,t;cin >> s >> t;
        mat.A[s][t] = mat.A[t][s] = 1;
    }
    cout << mat.pow(t).A[0][0] << endl;
    return 0;
}
0