結果

問題 No.957 植林
ユーザー koba-e964
提出日時 2021-11-20 00:59:22
言語 Rust
(1.83.0 + proconio)
結果
WA  
実行時間 -
コード長 5,261 bytes
コンパイル時間 13,827 ms
コンパイル使用メモリ 400,736 KB
実行使用メモリ 48,040 KB
最終ジャッジ日時 2025-01-02 03:28:18
合計ジャッジ時間 86,496 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1 WA * 1 RE * 1
other AC * 4 WA * 6 RE * 12 TLE * 23
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes.by_ref().map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr,) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
/**
* Dinic's algorithm for maximum flow problem.
* Verified by: yukicoder No.177 (http://yukicoder.me/submissions/148371)
* Min-cut (the second element of max_flow's returned values) is not verified.
*/
#[derive(Clone)]
struct Edge<T> {
to: usize,
cap: T,
rev: usize, // rev is the position of the reverse edge in graph[to]
}
struct Dinic<T> {
graph: Vec<Vec<Edge<T>>>,
iter: Vec<usize>,
zero: T,
}
impl<T> Dinic<T>
where T: Clone,
T: Copy,
T: Ord,
T: std::ops::AddAssign,
T: std::ops::SubAssign,
{
fn bfs(&self, s: usize, level: &mut [Option<usize>]) {
let n = level.len();
for i in 0 .. n {
level[i] = None;
}
let mut que = std::collections::VecDeque::new();
level[s] = Some(0);
que.push_back(s);
while let Some(v) = que.pop_front() {
for e in self.graph[v].iter() {
if e.cap > self.zero && level[e.to] == None {
level[e.to] = Some(level[v].unwrap() + 1);
que.push_back(e.to);
}
}
}
}
/* search augment path by dfs.
* if f == None, f is treated as infinity.
*/
fn dfs(&mut self, v: usize, t: usize, f: Option<T>, level: &mut [Option<usize>]) -> T {
if v == t {
return f.unwrap();
}
while self.iter[v] < self.graph[v].len() {
let i = self.iter[v];
let e = self.graph[v][i].clone();
if e.cap > self.zero && level[v] < level[e.to] {
let newf = std::cmp::min(f.unwrap_or(e.cap), e.cap);
let d = self.dfs(e.to, t, Some(newf), level);
if d > self.zero {
self.graph[v][i].cap -= d;
self.graph[e.to][e.rev].cap += d;
return d;
}
}
self.iter[v] += 1;
}
self.zero
}
pub fn new(n: usize, zero: T) -> Self {
Dinic {
graph: vec![Vec::new(); n],
iter: vec![0; n],
zero: zero,
}
}
pub fn add_edge(&mut self, from: usize, to: usize, cap: T) {
let added_from = Edge { to: to, cap: cap,
rev: self.graph[to].len() };
let added_to = Edge { to: from, cap: self.zero,
rev: self.graph[from].len() };
self.graph[from].push(added_from);
self.graph[to].push(added_to);
}
pub fn max_flow(&mut self, s: usize, t: usize) -> (T, Vec<usize>) {
let mut flow = self.zero;
let n = self.graph.len();
let mut level = vec![None; n];
loop {
self.bfs(s, &mut level);
if level[t] == None {
let ret = (0 .. n).filter(|&i| level[i] == None)
.collect();
return (flow, ret);
}
self.iter.clear();
self.iter.resize(n, 0);
loop {
let f = self.dfs(s, t, None, &mut level);
if f <= self.zero { break; }
flow += f;
}
}
}
}
fn main() {
// In order to avoid potential stack overflow, spawn a new thread.
let stack_size = 104_857_600; // 100 MB
let thd = std::thread::Builder::new().stack_size(stack_size);
thd.spawn(|| solve()).unwrap().join().unwrap();
}
fn solve() {
input! {
h: usize, w: usize,
g: [[i64; w]; h],
r: [i64; h],
c: [i64; w],
}
let big = 1 << 30;
let inf = 1 << 50;
let mut din = Dinic::new(2 + h + w + h * w, 0i64);
for i in 0..h {
din.add_edge(0, 2 + i, big);
din.add_edge(2 + i, 1, big - r[i]);
for j in 0..w {
din.add_edge(2 + i, 2 + h + w + i * w + j, inf);
din.add_edge(2 + h + j, 2 + h + w + i * w + j, inf);
din.add_edge(2 + h + w + i * w + j, 1, g[i][j]);
}
}
for j in 0..h {
din.add_edge(0, 2 + h + j, big);
din.add_edge(2 + h + j, 1, big - c[j]);
}
let (ma, _) = din.max_flow(0, 1);
println!("{}", ma - big * (h + w) as i64);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0