結果
問題 | No.1775 Love Triangle 2 |
ユーザー | hitonanode |
提出日時 | 2021-11-20 10:38:04 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 15,559 bytes |
コンパイル時間 | 2,423 ms |
コンパイル使用メモリ | 175,528 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-07-03 21:09:24 |
合計ジャッジ時間 | 17,862 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
6,816 KB |
testcase_01 | AC | 3 ms
6,940 KB |
testcase_02 | AC | 4 ms
6,940 KB |
testcase_03 | AC | 3 ms
6,940 KB |
testcase_04 | AC | 503 ms
6,940 KB |
testcase_05 | AC | 499 ms
6,940 KB |
testcase_06 | AC | 497 ms
6,944 KB |
testcase_07 | AC | 198 ms
6,940 KB |
testcase_08 | AC | 609 ms
6,940 KB |
testcase_09 | AC | 23 ms
6,940 KB |
testcase_10 | AC | 28 ms
6,944 KB |
testcase_11 | AC | 34 ms
6,944 KB |
testcase_12 | AC | 36 ms
6,944 KB |
testcase_13 | AC | 48 ms
6,940 KB |
testcase_14 | AC | 72 ms
6,944 KB |
testcase_15 | AC | 148 ms
6,944 KB |
testcase_16 | AC | 167 ms
6,944 KB |
testcase_17 | AC | 231 ms
6,944 KB |
testcase_18 | AC | 397 ms
6,944 KB |
testcase_19 | AC | 28 ms
6,944 KB |
testcase_20 | AC | 33 ms
6,944 KB |
testcase_21 | AC | 33 ms
6,940 KB |
testcase_22 | AC | 41 ms
6,944 KB |
testcase_23 | AC | 44 ms
6,944 KB |
testcase_24 | AC | 32 ms
6,948 KB |
testcase_25 | AC | 46 ms
6,944 KB |
testcase_26 | AC | 52 ms
6,944 KB |
testcase_27 | AC | 44 ms
6,944 KB |
testcase_28 | AC | 72 ms
6,944 KB |
testcase_29 | AC | 513 ms
6,944 KB |
testcase_30 | AC | 569 ms
6,944 KB |
testcase_31 | AC | 328 ms
6,940 KB |
testcase_32 | AC | 312 ms
6,940 KB |
testcase_33 | AC | 189 ms
6,944 KB |
testcase_34 | AC | 188 ms
6,944 KB |
testcase_35 | AC | 139 ms
6,940 KB |
testcase_36 | AC | 68 ms
6,944 KB |
testcase_37 | AC | 31 ms
6,940 KB |
testcase_38 | AC | 15 ms
6,940 KB |
testcase_39 | AC | 597 ms
6,944 KB |
testcase_40 | AC | 368 ms
6,944 KB |
testcase_41 | AC | 278 ms
6,940 KB |
testcase_42 | AC | 272 ms
6,940 KB |
testcase_43 | AC | 190 ms
6,940 KB |
testcase_44 | AC | 194 ms
6,944 KB |
testcase_45 | AC | 138 ms
6,944 KB |
testcase_46 | AC | 81 ms
6,940 KB |
testcase_47 | AC | 38 ms
6,944 KB |
testcase_48 | AC | 29 ms
6,940 KB |
testcase_49 | AC | 475 ms
6,940 KB |
testcase_50 | AC | 559 ms
6,944 KB |
testcase_51 | AC | 304 ms
6,944 KB |
testcase_52 | AC | 292 ms
6,940 KB |
testcase_53 | AC | 179 ms
6,944 KB |
testcase_54 | WA | - |
testcase_55 | AC | 132 ms
6,940 KB |
testcase_56 | AC | 70 ms
6,940 KB |
testcase_57 | AC | 33 ms
6,940 KB |
testcase_58 | WA | - |
testcase_59 | AC | 570 ms
6,940 KB |
testcase_60 | AC | 359 ms
6,944 KB |
testcase_61 | AC | 271 ms
6,944 KB |
testcase_62 | AC | 267 ms
6,940 KB |
testcase_63 | AC | 187 ms
6,940 KB |
testcase_64 | AC | 143 ms
6,944 KB |
testcase_65 | AC | 82 ms
6,940 KB |
testcase_66 | AC | 44 ms
6,944 KB |
testcase_67 | AC | 33 ms
6,944 KB |
testcase_68 | AC | 27 ms
6,944 KB |
testcase_69 | AC | 23 ms
6,944 KB |
testcase_70 | WA | - |
testcase_71 | WA | - |
testcase_72 | WA | - |
testcase_73 | AC | 19 ms
6,944 KB |
testcase_74 | WA | - |
testcase_75 | AC | 18 ms
6,940 KB |
testcase_76 | AC | 21 ms
6,948 KB |
testcase_77 | AC | 19 ms
6,944 KB |
testcase_78 | AC | 18 ms
6,940 KB |
testcase_79 | AC | 32 ms
6,944 KB |
testcase_80 | WA | - |
testcase_81 | WA | - |
testcase_82 | WA | - |
testcase_83 | AC | 30 ms
6,940 KB |
testcase_84 | WA | - |
testcase_85 | AC | 30 ms
6,940 KB |
testcase_86 | AC | 34 ms
6,940 KB |
testcase_87 | WA | - |
testcase_88 | WA | - |
testcase_89 | AC | 19 ms
6,940 KB |
ソースコード
// 嘘ヒューリスティック // 「x -> y, x -> z に MCF」 -> 「未使用頂点・辺で y->z SP」 // 更に各頂点を一定の確率で使用不能にして MCF を最適解から少しずらす #include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <complex> #include <deque> #include <forward_list> #include <fstream> #include <functional> #include <iomanip> #include <ios> #include <iostream> #include <limits> #include <list> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <string> #include <tuple> #include <type_traits> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template <typename T, typename V> void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); } template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); } template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); } template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); } template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template <typename T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template <typename T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } #if __cplusplus >= 201703L template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } #endif template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; } template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl #define dbgif(cond, x) ((cond) ? cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl : cerr) #else #define dbg(x) (x) #define dbgif(cond, x) 0 #endif template <typename T, T INF = std::numeric_limits<T>::max() / 2, int INVALID = -1> struct ShortestPath { int V, E; bool single_positive_weight; T wmin, wmax; std::vector<std::vector<std::pair<int, T>>> to; ShortestPath(int V = 0) : V(V), E(0), single_positive_weight(true), wmin(0), wmax(0), to(V) {} void add_edge(int s, int t, T w) { assert(0 <= s and s < V); assert(0 <= t and t < V); to[s].emplace_back(t, w); E++; if (w > 0 and wmax > 0 and wmax != w) single_positive_weight = false; wmin = std::min(wmin, w); wmax = std::max(wmax, w); } std::vector<T> dist; std::vector<int> prev; // Dijkstra algorithm // Complexity: O(E log E) using Pque = std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>, std::greater<std::pair<T, int>>>; template <class Heap = Pque> void Dijkstra(int s) { assert(0 <= s and s < V); dist.assign(V, INF); dist[s] = 0; prev.assign(V, INVALID); Heap pq; pq.emplace(0, s); while (!pq.empty()) { T d; int v; std::tie(d, v) = pq.top(); pq.pop(); if (dist[v] < d) continue; for (auto nx : to[v]) { T dnx = d + nx.second; if (dist[nx.first] > dnx) { dist[nx.first] = dnx, prev[nx.first] = v; pq.emplace(dnx, nx.first); } } } } // Dijkstra algorithm, O(V^2 + E) void DijkstraVquad(int s) { assert(0 <= s and s < V); dist.assign(V, INF); dist[s] = 0; prev.assign(V, INVALID); std::vector<char> fixed(V, false); while (true) { int r = INVALID; T dr = INF; for (int i = 0; i < V; i++) { if (!fixed[i] and dist[i] < dr) r = i, dr = dist[i]; } if (r == INVALID) break; fixed[r] = true; int nxt; T dx; for (auto p : to[r]) { std::tie(nxt, dx) = p; if (dist[nxt] > dist[r] + dx) dist[nxt] = dist[r] + dx, prev[nxt] = r; } } } // Bellman-Ford algorithm // Complexity: O(VE) bool BellmanFord(int s, int nb_loop) { assert(0 <= s and s < V); dist.assign(V, INF), prev.assign(V, INVALID); dist[s] = 0; for (int l = 0; l < nb_loop; l++) { bool upd = false; for (int v = 0; v < V; v++) { if (dist[v] == INF) continue; for (auto nx : to[v]) { T dnx = dist[v] + nx.second; if (dist[nx.first] > dnx) dist[nx.first] = dnx, prev[nx.first] = v, upd = true; } } if (!upd) return true; } return false; } // Bellman-ford algorithm using queue (deque) // Complexity: O(VE) // Requirement: no negative loop void SPFA(int s) { assert(0 <= s and s < V); dist.assign(V, INF); prev.assign(V, INVALID); std::deque<int> q; std::vector<char> in_queue(V); dist[s] = 0; q.push_back(s), in_queue[s] = 1; while (!q.empty()) { int now = q.front(); q.pop_front(), in_queue[now] = 0; for (auto nx : to[now]) { T dnx = dist[now] + nx.second; int nxt = nx.first; if (dist[nxt] > dnx) { dist[nxt] = dnx; if (!in_queue[nxt]) { if (q.size() and dnx < dist[q.front()]) { // Small label first optimization q.push_front(nxt); } else { q.push_back(nxt); } prev[nxt] = now, in_queue[nxt] = 1; } } } } } void ZeroOneBFS(int s) { assert(0 <= s and s < V); dist.assign(V, INF), prev.assign(V, INVALID); dist[s] = 0; std::deque<int> que; que.push_back(s); while (!que.empty()) { int v = que.front(); que.pop_front(); for (auto nx : to[v]) { T dnx = dist[v] + nx.second; if (dist[nx.first] > dnx) { dist[nx.first] = dnx, prev[nx.first] = v; if (nx.second) { que.push_back(nx.first); } else { que.push_front(nx.first); } } } } } bool dag_solver(int s) { assert(0 <= s and s < V); std::vector<int> indeg(V, 0); std::queue<int> que; que.push(s); while (que.size()) { int now = que.front(); que.pop(); for (auto nx : to[now]) { indeg[nx.first]++; if (indeg[nx.first] == 1) que.push(nx.first); } } dist.assign(V, INF), prev.assign(V, INVALID); dist[s] = 0; que.push(s); while (que.size()) { int now = que.front(); que.pop(); for (auto nx : to[now]) { indeg[nx.first]--; if (dist[nx.first] > dist[now] + nx.second) dist[nx.first] = dist[now] + nx.second, prev[nx.first] = now; if (indeg[nx.first] == 0) que.push(nx.first); } } return *max_element(indeg.begin(), indeg.end()) == 0; } // Retrieve a sequence of vertex ids that represents shortest path [s, ..., goal] // If not reachable to goal, return {} std::vector<int> retrieve_path(int goal) const { assert(int(prev.size()) == V); assert(0 <= goal and goal < V); if (dist[goal] == INF) return {}; std::vector<int> ret{goal}; while (prev[goal] != INVALID) { goal = prev[goal]; ret.push_back(goal); } std::reverse(ret.begin(), ret.end()); return ret; } void solve(int s) { if (wmin >= 0) { if (single_positive_weight) { ZeroOneBFS(s); } else { if ((long long)V * V < (E << 4)) { DijkstraVquad(s); } else { Dijkstra(s); } } } else { BellmanFord(s, V); } } // Warshall-Floyd algorithm // Complexity: O(E + V^3) std::vector<std::vector<T>> dist2d; void WarshallFloyd() { dist2d.assign(V, std::vector<T>(V, INF)); for (int i = 0; i < V; i++) { dist2d[i][i] = 0; for (auto p : to[i]) dist2d[i][p.first] = std::min(dist2d[i][p.first], p.second); } for (int k = 0; k < V; k++) { for (int i = 0; i < V; i++) { if (dist2d[i][k] == INF) continue; for (int j = 0; j < V; j++) { if (dist2d[k][j] == INF) continue; dist2d[i][j] = std::min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]); } } } } void dump_graphviz(std::string filename = "shortest_path") const { std::ofstream ss(filename + ".DOT"); ss << "digraph{\n"; for (int i = 0; i < V; i++) { for (const auto &e : to[i]) ss << i << "->" << e.first << "[label=" << e.second << "];\n"; } ss << "}\n"; ss.close(); return; } }; #include <atcoder/mincostflow> constexpr int INF = 1 << 20; uint32_t rand_int() // XorShift random integer generator { static uint32_t x = 123456789, y = 362436069, z = 521288629, w = 88675123; uint32_t t = x ^ (x << 11); x = y; y = z; z = w; return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)); } double rand_double() { return (double)rand_int() / UINT32_MAX; } int mcf_uso(int N, const vector<vector<int>> &to, int x, int y, int z, int iter) { const int gt = N * 2; atcoder::mcf_graph<int, int> graph(gt + 1); vector<int> valid_v(N, 1); REP(i, N) { if (rand_int() % 100 == 0) valid_v[i] = 0; } for (int i = 0; i < N; ++i) { graph.add_edge(i, i + N, valid_v[i], 0); } for (int i = 0; i < N; ++i) { for (auto j : to[i]) graph.add_edge(i + N, j, 1, 1); } graph.add_edge(y, gt, 1, 0); graph.add_edge(z, gt, 1, 0); auto f = graph.flow(x + N, gt, 2); if (f.first < 2) return INF; vector<int> used(N); used[x] = 1; int ans = f.second; for (int i = 0; i < N; ++i) { auto e = graph.get_edge(i); if (e.flow) { used[i] = 1; } } // for (auto e : graph.edges()) { // if (e.flow) { // dbg(pint(e.from, e.to)); // } // } // dbg((vector<int>{x, y, z})); // dbg(f); // dbg(used); ShortestPath<int, INF> sssp(N); for (int i = 0; i < N; ++i) { if (used[i]) continue; for (auto j : to[i]) { if (used[j]) continue; sssp.add_edge(i, j, 1); } } sssp.solve(y); // dbg(ans + sssp.dist[z]); return ans + sssp.dist[z]; } int main() { int N, M; cin >> N >> M; int x, y, z; cin >> x >> y >> z; --x, --y, --z; vector conn(N, vector<int>(N, 1)); REP(i, N) conn[i][i] = 0; while (M--) { int a, b; cin >> a >> b; --a, --b; conn[a][b] = conn[b][a] = 0; } vector to(N, vector<int>{}); REP(i, N) { REP(j, N) if (conn[i][j]) to[i].push_back(j); } // dbg(to); auto ret = INF; REP(iter, 100) { chmin(ret, mcf_uso(N, to, x, y, z, iter)); chmin(ret, mcf_uso(N, to, x, z, y, iter)); chmin(ret, mcf_uso(N, to, y, z, x, iter)); chmin(ret, mcf_uso(N, to, y, x, z, iter)); chmin(ret, mcf_uso(N, to, z, x, y, iter)); chmin(ret, mcf_uso(N, to, z, y, x, iter)); } cout << (ret == INF ? -1 : ret) << '\n'; }