結果
問題 | No.1756 Rider's Triangle |
ユーザー |
![]() |
提出日時 | 2021-11-20 13:39:09 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 4,544 bytes |
コンパイル時間 | 1,914 ms |
コンパイル使用メモリ | 149,288 KB |
最終ジャッジ日時 | 2025-01-25 21:36:31 |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 25 |
ソースコード
#pragma GCC optimize("O3")#pragma GCC optimize("unroll-loops")#include<iostream>#include<string>#include<cstdio>#include<vector>#include<cmath>#include<algorithm>#include<functional>#include<iomanip>#include<queue>#include<ciso646>#include<random>#include<map>#include<set>#include<bitset>#include<stack>#include<unordered_map>#include<unordered_set>#include<utility>#include<cassert>#include<complex>#include<numeric>#include<array>#include<chrono>using namespace std;//#define int long longtypedef long long ll;typedef unsigned long long ul;typedef unsigned int ui;const ll mod = 998244353;const ll INF = mod * mod;typedef pair<int, int>P;#define rep(i,n) for(int i=0;i<n;i++)#define per(i,n) for(int i=n-1;i>=0;i--)#define Rep(i,sta,n) for(int i=sta;i<n;i++)#define rep1(i,n) for(int i=1;i<=n;i++)#define per1(i,n) for(int i=n;i>=1;i--)#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)#define all(v) (v).begin(),(v).end()typedef pair<ll, ll> LP;typedef double ld;typedef pair<ld, ld> LDP;const ld eps = 1e-4;const ld pi = acosl(-1.0);template<typename T>void chmin(T& a, T b) {a = min(a, b);}template<typename T>void chmax(T& a, T b) {a = max(a, b);}ll mod_pow(ll x, ll n, ll m = mod) {if (n < 0) {ll res = mod_pow(x, -n, m);return mod_pow(res, m - 2, m);}if (abs(x) >= m)x %= m;if (x < 0)x += m;ll res = 1;while (n) {if (n & 1)res = res * x % m;x = x * x % m; n >>= 1;}return res;}struct modint {ll n;modint() :n(0) { ; }modint(ll m) :n(m) {if (n >= mod)n %= mod;else if (n < 0)n = (n % mod + mod) % mod;}operator int() { return n; }};bool operator==(modint a, modint b) { return a.n == b.n; }modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }modint operator+(modint a, modint b) { return a += b; }modint operator-(modint a, modint b) { return a -= b; }modint operator*(modint a, modint b) { return a *= b; }modint operator^(modint a, ll n) {if (n == 0)return modint(1);modint res = (a * a) ^ (n / 2);if (n % 2)res = res * a;return res;}ll inv(ll a, ll p) {return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);}modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }modint operator/=(modint& a, modint b) { a = a / b; return a; }const int max_n = 1 << 10;modint fact[max_n], factinv[max_n];void init_f() {fact[0] = modint(1);for (int i = 0; i < max_n - 1; i++) {fact[i + 1] = fact[i] * modint(i + 1);}factinv[max_n - 1] = modint(1) / fact[max_n - 1];for (int i = max_n - 2; i >= 0; i--) {factinv[i] = factinv[i + 1] * modint(i + 1);}}modint comb(int a, int b) {if (a < 0 || b < 0 || a < b)return 0;return fact[a] * factinv[b] * factinv[a - b];}modint combP(int a, int b) {if (a < 0 || b < 0 || a < b)return 0;return fact[a] * factinv[a - b];}int dx[4] = { 1,0,-1,0 };int dy[4] = { 0,1,0,-1 };ll gcd(ll a, ll b) {a = abs(a);b = abs(b);if (a < b)swap(a, b);while (b) {ll r = a % b; a = b; b = r;}return a;}void solve() {int a, b; ll n; cin >> a >> b >> n;if (a == b||a==0) {cout << 0 << "\n"; return;}ll mi = INF;modint ans = 0;vector<P> vp = { {a,b},{b,a},{a,-b},{b,-a} };rep(i, 4)rep(j, 4)rep(k, 4) {if (i == j || j == k || k == i)continue;ll s[3] = { vp[i].first,vp[j].first,vp[k].first };ll t[3] = { vp[i].second,vp[j].second,vp[k].second };ll x = s[2] * t[1] - s[1] * t[2];ll y = s[0] * t[2] - s[2] * t[0];ll z = s[1] * t[0] - s[0] * t[1];ll g = gcd(gcd(x, y), z);x /= g;y /= g;z /= g;assert(x != 0 && y != 0 && z != 0);ll cx[3], cy[3];cx[0] = 0, cy[0] = 0;ll dx1 = x * s[0];ll dy1 = x * t[0];ll dx2 = -z * s[2];ll dy2 = -z * t[2];cx[1] = dx1, cx[2] = dx2, cy[1] = dy1, cy[2] = dy2;ll area = abs(dx1 * dy2 - dx2 * dy1);modint num = 0;ll lenx = max({ cx[0],cx[1],cx[2] }) - min({ cx[0],cx[1],cx[2] });ll leny = max({ cy[0],cy[1],cy[2] }) - min({ cy[0],cy[1],cy[2] });num = ((modint)n - (modint)lenx) * ((modint)n - (modint)leny);if (area < mi) {mi = area;ans = num;}else if (area == mi) {ans += num;}}ans /= 3;cout << ans << "\n";}signed main() {ios::sync_with_stdio(false);cin.tie(0);//cout << fixed << setprecision(10);//init_f();//init();//int t; cin >> t; rep(i, t)solve();return 0;}