結果
問題 | No.1755 Almost Palindrome |
ユーザー | tada721 |
提出日時 | 2021-11-20 13:48:26 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 181 ms / 2,000 ms |
コード長 | 14,343 bytes |
コンパイル時間 | 1,564 ms |
コンパイル使用メモリ | 117,956 KB |
実行使用メモリ | 12,288 KB |
最終ジャッジ日時 | 2024-06-11 08:01:51 |
合計ジャッジ時間 | 1,864 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 13 ms
12,160 KB |
testcase_01 | AC | 13 ms
12,288 KB |
testcase_02 | AC | 181 ms
12,160 KB |
コンパイルメッセージ
main.cpp: In function 'long long int keta(long long int)': main.cpp:47:1: warning: control reaches end of non-void function [-Wreturn-type] 47 | } | ^ main.cpp: In function 'long long int gcd(long long int, long long int)': main.cpp:61:1: warning: control reaches end of non-void function [-Wreturn-type] 61 | } | ^ main.cpp: In function 'long long int lcm(long long int, long long int)': main.cpp:74:1: warning: control reaches end of non-void function [-Wreturn-type] 74 | } | ^
ソースコード
#include<iostream> #include<algorithm> #include<cmath> #include<map> #include<stdio.h> #include<vector> #include<queue> #include<math.h> #include<deque> #include<set> #include<tuple> #include<string> #include<random> #include<ctime> #include<bitset> #include<iomanip> #include<limits> using namespace std; #define ll long long #define int long long #define double long double #define rep(s,i,n) for(int i=s;i<n;i++) #define c(n) cout<<n<<endl; #define ic(n) int n;cin>>n; #define sc(s) string s;cin>>s; #define mod 998244353 #define inf 2000000000000000007 #define f first #define s second #define mini(c,a,b) *min_element(c+a,c+b) #define maxi(c,a,b) *max_element(c+a,c+b) #define pi 3.141592653589793238462643383279 #define e_ 2.718281828459045235360287471352 #define P pair<int,int> #define upp(a,n,x) upper_bound(a,a+n,x)-a; #define low(a,n,x) lower_bound(a,a+n,x)-a; #define UF UnionFind #define pb push_back int keta(int x) { rep(0, i, 30) { if (x < 10) { return i + 1; } x = x / 10; } } int gcd(int x, int y) { if (x == 0 || y == 0)return x + y; int aa = x, bb = y; rep(0, i, 1000) { aa = aa % bb; if (aa == 0) { return bb; } bb = bb % aa; if (bb == 0) { return aa; } } } int lcm(int x, int y) { int aa = x, bb = y; rep(0, i, 1000) { aa = aa % bb; if (aa == 0) { return x / bb * y; } bb = bb % aa; if (bb == 0) { return x / aa * y; } } } bool prime(int x) { if (x == 1)return false; rep(2, i, sqrt(x) + 1) { if (x % i == 0 && x != i) { return false; } } return true; } int max(int a, int b) { if (a >= b)return a; else return b; } string maxst(string s, string t) { int n = s.size(); int m = t.size(); if (n > m)return s; else if (n < m)return t; else { rep(0, i, n) { if (s[i] > t[i])return s; if (s[i] < t[i])return t; } return s; } } int min(int a, int b) { if (a >= b)return b; else return a; } int yakuwa(int n) { int sum = 0; rep(1, i, sqrt(n + 1)) { if (n % i == 0)sum += i + n / i; if (i * i == n)sum -= i; } return sum; } int poow(int n,int m){ int pro=1; int nn=n; while(m){ if(m%2==1)pro=pro*nn%mod; m=m/2; nn=nn*nn%mod; } return pro; } int poow2(int n,int m,int modulo){ int pro=1; int nn=n; while(m){ if(m%2==1)pro=pro*nn%modulo; m=m/2; nn=nn*nn%modulo; } return pro; } int inv(int n,int m){ int t=poow(m,mod-2)%mod; return n*t%mod; } int com(int n,int m){ if(n<m)return 0; int bunsi=1,bunbo=1; for(int i=n-m+1;i<=n;i++)bunsi=bunsi*(i%mod)%mod; for(int i=1;i<=m;i++)bunbo=bunbo*(i%mod)%mod; return inv(bunsi,bunbo); } int minpow(int x, int y) { int sum = 1; rep(0, i, y)sum *= x; return sum; } int ketawa(int x, int sinsuu) { int sum = 0; rep(0, i, 100)sum += (x % poow(sinsuu, i + 1)) / (poow(sinsuu, i)); return sum; } int sankaku(int a) { return a * (a + 1) / 2; } int sames(int a[1111111], int n) { int ans = 0; rep(0, i, n) { if (a[i] == a[i + 1]) { int j = i; while (a[j + 1] == a[i] && j <= n - 2)j++; ans += sankaku(j - i); i = j; } } return ans; } struct UnionFind { vector<int> par; UnionFind(int n):par(n){ rep(0,i,n)par[i]=i; } int root(int x){ if (par[x]==x)return x; return par[x]=root(par[x]); } void unite(int x,int y){ int rx=root(x); int ry=root(y); if (rx==ry) return; par[rx]=ry; } bool same(int x,int y){ int rx=root(x); int ry=root(y); return rx==ry; } }; int dijkstraa[5145]; void dijkstra(int n,int m,int c[7500],int d[7500],int l[7500],int siten,bool mukou){ vector<P> e[5145]; rep(0,i,m){ e[c[i]].pb(P{l[i],d[i]}); if(mukou)e[d[i]].pb(P{l[i],c[i]}); } rep(0,i,n)dijkstraa[i]=inf; dijkstraa[siten]=0; priority_queue<P,vector<P>,greater<P>>pp; pp.push(P{0,siten}); while(!pp.empty()){ P t=pp.top();pp.pop(); if(t.first!=dijkstraa[t.second])continue; rep(0,i,e[t.s].size()){ P g=e[t.s][i]; if(dijkstraa[g.second]>t.first+g.first){ dijkstraa[g.second]=t.first+g.first; pp.push(P{dijkstraa[g.second],g.second}); } } } } int dijkstra2(int shuten){ return dijkstraa[shuten]; } vector<int> toposo(vector<vector<int>> G,vector<int> indegree,int n){ vector<int> sorted_vertices; priority_queue<int,vector<int>,greater<int>> que; rep(0,i,n)if(!indegree[i])que.push(i); while(!que.empty()){ int v=que.top(); que.pop(); rep(0,i,G[v].size()){ int u=G[v][i]; indegree[u]-=1; if(!indegree[u])que.push(u); } sorted_vertices.pb(v); } return sorted_vertices; } struct segtree{ vector<int> dat; int n; segtree(int n_):n(),dat(n_*4,inf){ int x=1; while(n_>=x)x*=2; n=x; } void update(int i,int x){ i+=n-1; dat[i]=x; while(i>0){ i=(i-1)/2; dat[i]=min(dat[i*2+1],dat[i*2+2]); } } int query(int a,int b){return query_sub(a,b,0,0,n);} int query_sub(int a,int b,int k,int l,int r){ if(r<=a||b<=l)return inf; else if(a<=l&&r<=b)return dat[k]; else{ int vl=query_sub(a,b,k*2+1,l,(l+r)/2); int vr=query_sub(a,b,k*2+2,(l+r)/2,r); return min(vl,vr); } } int rightest(int a,int b,int x){return rightest_sub(a,b,x,0,0,n);} int rightest_sub(int a,int b,int x,int k,int l,int r){ if(dat[k]>x||r<=a||b<=l)return a-1; else if(k>=n-1)return k-(n-1); else{ int vr=rightest_sub(a,b,x,2*k+2,(l+r)/2,r); if(vr!=a-1)return vr; else return rightest_sub(a,b,x,2*k+1,l,(l+r)/2); } } int leftest(int a,int b,int x){return leftest_sub(a,b,x,0,0,n);} int leftest_sub(int a,int b,int x,int k,int l,int r){ if(dat[k]>x||r<=a||b<=l)return b; else if(k>=n-1)return k-(n-1); else{ int vl=leftest_sub(a,b,x,2*k+1,l,(l+r)/2); if(vl!=b)return vl; else return leftest_sub(a,b,x,2*k+2,(l+r)/2,r); } } }; template<int MOD> struct Fp { long long val; constexpr Fp(long long v = 0) noexcept : val(v % MOD) { if (val < 0) v += MOD; } constexpr int getmod() { return MOD; } constexpr Fp operator - () const noexcept { return val ? MOD - val : 0; } constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; } constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; } constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; } constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; } constexpr Fp& operator += (const Fp& r) noexcept { val += r.val; if (val >= MOD) val -= MOD; return *this; } constexpr Fp& operator -= (const Fp& r) noexcept { val -= r.val; if (val < 0) val += MOD; return *this; } constexpr Fp& operator *= (const Fp& r) noexcept { val = val * r.val % MOD; return *this; } constexpr Fp& operator /= (const Fp& r) noexcept { long long a = r.val, b = MOD, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } val = val * u % MOD; if (val < 0) val += MOD; return *this; } constexpr bool operator == (const Fp& r) const noexcept { return this->val == r.val; } constexpr bool operator != (const Fp& r) const noexcept { return this->val != r.val; } friend constexpr ostream& operator << (ostream &os, const Fp<MOD>& x) noexcept { return os << x.val; } friend constexpr istream& operator >> (istream &is, Fp<MOD>& x) noexcept { return is >> x.val; } friend constexpr Fp<MOD> modpow(const Fp<MOD> &a, long long n) noexcept { if (n == 0) return 1; auto t = modpow(a, n / 2); t = t * t; if (n & 1) t = t * a; return t; } }; template<typename T,T INF> struct Beats { int size = 1; private: vector<T> mx, smx, mxc; vector<T> mn, smn, mnc; vector<T> sum, lazy; vector<bool> flag; void update(int k) { sum[k] = sum[k * 2 + 1] + sum[k * 2 + 2]; mx[k] = max(mx[2 * k + 1], mx[2 * k + 2]); if (mx[2 * k + 1] < mx[2 * k + 2]) { mxc[k] = mxc[2 * k + 2]; smx[k] = max(mx[2 * k + 1], smx[2 * k + 2]); } else if (mx[2 * k + 1] > mx[2 * k + 2]) { mxc[k] = mxc[2 * k + 1]; smx[k] = max(smx[2 * k + 1], mx[2 * k + 2]); } else { mxc[k] = mxc[2 * k + 1] + mxc[2 * k + 2]; smx[k] = max(smx[2 * k + 1], smx[2 * k + 2]); } mn[k] = min(mn[2 * k + 1], mn[2 * k + 2]); if (mn[2 * k + 1] < mn[2 * k + 2]) { mnc[k] = mnc[2 * k + 1]; smn[k] = min(smn[2 * k + 1], mn[2 * k + 2]); } else if (mn[2 * k + 1] > mn[2 * k + 2]) { mnc[k] = mnc[2 * k + 2]; smn[k] = min(mn[2 * k + 1], smn[2 * k + 2]); } else { mnc[k] = mnc[2 * k + 1] + mnc[2 * k + 2]; smn[k] = min(smn[2 * k + 1], smn[2 * k + 2]); } } void updateNodeMax(int k, T x) { sum[k] += (x - mx[k]) * mxc[k]; if (mx[k] == mn[k]) { mx[k] = mn[k] = x; } else if (mx[k] == smn[k]) { mx[k] = smn[k] = x; } else { mx[k] = x; } } void updateNodeMin(int k, T x) { sum[k] += (x - mn[k]) * mnc[k]; if (mx[k] == mn[k]) { mx[k] = mn[k] = x; } else if (smx[k] == mn[k]) { smx[k] = mn[k] = x; } else { mn[k] = x; } } void updateNodeAdd(int k, int len, T x) { mx[k] += x; if (smx[k] != -INF) smx[k] += x; mn[k] += x; if (smn[k] != INF) smn[k] += x; sum[k] += x * len; lazy[k] += x; } void updateNodeAssign(int k, int len, T x) { mx[k] = x; smx[k] = -INF; mxc[k] = len; mn[k] = x; smn[k] = INF; mnc[k] = len; sum[k] = x * len; lazy[k] = x; flag[k] = true; } void push(int k, int len) { if (k >= size - 1) return; if (flag[k] || lazy[k] != 0) { if (flag[k]) { updateNodeAssign(k * 2 + 1, len / 2, lazy[k]); updateNodeAssign(k * 2 + 2, len / 2, lazy[k]); } else { updateNodeAdd(k * 2 + 1, len / 2, lazy[k]); updateNodeAdd(k * 2 + 2, len / 2, lazy[k]); } lazy[k] = 0; flag[k] = false; } if (mx[k * 2 + 1] > mx[k]) updateNodeMax(k * 2 + 1, mx[k]); if (mx[k * 2 + 2] > mx[k]) updateNodeMax(k * 2 + 2, mx[k]); if (mn[k * 2 + 1] < mn[k]) updateNodeMin(k * 2 + 1, mn[k]); if (mn[k * 2 + 2] < mn[k]) updateNodeMin(k * 2 + 2, mn[k]); } public: void updateMin(int a, int b, T x, int k = 0, int l = 0, int r = -1) { if (r == -1) r = size; if (r <= a || b <= l || mx[k] <= x) return; if (a <= l && r <= b && smx[k] < x) { updateNodeMax(k, x); return; } push(k, r - l); updateMin(a, b, x, k * 2 + 1, l, (l + r) / 2); updateMin(a, b, x, k * 2 + 2, (l + r) / 2, r); update(k); } void updateMax(int a, int b, T x, int k = 0, int l = 0, int r = -1) { if (r == -1) r = size; if (r <= a || b <= l || mn[k] >= x) return; if (a <= l && r <= b && smn[k] > x) { updateNodeMin(k, x); return; } push(k, r - l); updateMax(a, b, x, k * 2 + 1, l, (l + r) / 2); updateMax(a, b, x, k * 2 + 2, (l + r) / 2, r); update(k); } void updateAdd(int a, int b, T x, int k = 0, int l = 0, int r = -1) { if (r == -1) r = size; if (r <= a || b <= l) return; if (a <= l && r <= b) { updateNodeAdd(k, r - l, x); return; } push(k, r - l); updateAdd(a, b, x, k * 2 + 1, l, (l + r) / 2); updateAdd(a, b, x, k * 2 + 2, (l + r) / 2, r); update(k); } void updateAssign(int a, int b, T x, int k = 0, int l = 0, int r = -1) { if (r == -1) r = size; if (r <= a || b <= l) return; if (a <= l && r <= b) { updateNodeAssign(k, r - l, x); return; } push(k, r - l); updateAssign(a, b, x, k * 2 + 1, l, (l + r) / 2); updateAssign(a, b, x, k * 2 + 2, (l + r) / 2, r); update(k); } void set(int k, T x) { k += size - 1; mx[k] = x; mn[k] = x; sum[k] = x; } void init() { for (T i = size - 2; i >= 0; i--) update(i); } T queryMin(int a, int b, int k = 0, int l = 0, int r = -1) { if (r == -1) r = size; if (r <= a || b <= l) return INF; if (a <= l && r <= b) return mn[k]; push(k, r - l); T lv = queryMin(a, b, k * 2 + 1, l, (l + r) / 2); T rv = queryMin(a, b, k * 2 + 2, (l + r) / 2, r); return min(lv, rv); } T queryMax(int a, int b, int k = 0, int l = 0, int r = -1) { if (r == -1) r = size; if (r <= a || b <= l) return -INF; if (a <= l && r <= b) return mx[k]; push(k, r - l); T lv = queryMax(a, b, k * 2 + 1, l, (l + r) / 2); T rv = queryMax(a, b, k * 2 + 2, (l + r) / 2, r); return max(lv, rv); } T querySum(int a, int b, int k = 0, int l = 0, int r = -1) { if (r == -1) r = size; if (r <= a || b <= l) return 0; if (a <= l && r <= b) return sum[k]; push(k, r - l); T lv = querySum(a, b, k * 2 + 1, l, (l + r) / 2); T rv = querySum(a, b, k * 2 + 2, (l + r) / 2, r); return lv + rv; } Beats(int x) { while (size < x) size *= 2; mx.resize(size * 2 - 1, -INF + 1); smx.resize(size * 2 - 1, -INF); mxc.resize(size * 2 - 1, 1); mn.resize(size * 2 - 1, INF - 1); smn.resize(size * 2 - 1, INF); mnc.resize(size * 2 - 1, 1); sum.resize(size * 2 - 1); lazy.resize(size * 2 - 1); flag.resize(size * 2 - 1); } }; using mint=Fp<mod>; mint ans[1114514]; mint solve(int n){ mint po=poow(26,(n+1)/2); return ans[n]-po; } signed main(){ ic(t) mint k=1300; ans[1]=26; rep(3,i,1114514){ if(i%2==1){ ans[i]=ans[i-2]*26+k; k*=26; } } ans[2]=676; mint g=33150; mint gg=16250; rep(4,i,1114514){ if(i%2==0){ ans[i]=ans[i-2]*26+g; g=g*26+gg; } } while(t--){ ic(n) c(solve(n)) } }