結果
問題 | No.1747 Many Formulae 2 |
ユーザー | tamura2004 |
提出日時 | 2021-11-20 16:47:40 |
言語 | Crystal (1.11.2) |
結果 |
AC
|
実行時間 | 11 ms / 2,000 ms |
コード長 | 5,344 bytes |
コンパイル時間 | 14,903 ms |
コンパイル使用メモリ | 297,872 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-11 18:47:29 |
合計ジャッジ時間 | 14,623 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 11 ms
6,816 KB |
testcase_01 | AC | 10 ms
6,816 KB |
testcase_02 | AC | 10 ms
6,812 KB |
testcase_03 | AC | 11 ms
6,940 KB |
testcase_04 | AC | 10 ms
6,940 KB |
testcase_05 | AC | 10 ms
6,944 KB |
testcase_06 | AC | 10 ms
6,940 KB |
testcase_07 | AC | 10 ms
6,940 KB |
testcase_08 | AC | 10 ms
6,940 KB |
testcase_09 | AC | 10 ms
6,940 KB |
testcase_10 | AC | 10 ms
6,944 KB |
testcase_11 | AC | 10 ms
6,940 KB |
testcase_12 | AC | 10 ms
6,944 KB |
testcase_13 | AC | 10 ms
6,940 KB |
testcase_14 | AC | 10 ms
6,944 KB |
testcase_15 | AC | 11 ms
6,944 KB |
testcase_16 | AC | 10 ms
6,940 KB |
testcase_17 | AC | 10 ms
6,940 KB |
testcase_18 | AC | 10 ms
6,940 KB |
ソースコード
# require "crystal/prime" # 素数クラス # # エラストテレスの篩で、自身を割る最小の素数をクラス変数として持つ # 素数判定と、高速な素因数分解に利用 class Prime MAX = 1_000_000 extend Enumerable(Int32) class_getter div : Array(Int32) = sieve(MAX) class_getter each : PrimeIterator = PrimeIterator.new(div) # エラストテレスの篩 # # ``` # seive(5) # => [-1, -1, 2, 3, 2] # ``` def self.sieve(n : Int32) : Array(Int32) Array.new(n + 1, &.itself).tap do |dp| dp[0] = -1 dp[1] = -1 m = Math.sqrt(n).ceil.to_i 2.upto(m) do |i| next if dp[i] != i (i*i).step(to: n, by: i) do |j| dp[j] = i if dp[j] == j end end end end # 素数判定 # # ``` # Prime.is_Prime(7) # => true # ``` def self.is_prime?(n) div[n] == n end # 素数列挙(イテレータ・状態を持つ) # # ``` # Prime.first(4).to_a # => [2, 3, 5, 7] # Prime.first(4).to_a # => [13,17,19,23] # ``` def self.each(&block : Int32 -> _) while true value = each.next break if value.is_a?(Iterator::Stop::INSTANCE) yield value.as(Int32) end end # 素因数分解 # # ``` # Prime.prime_division(72) # => {2 => 3, 3 => 2} # ``` def self.prime_division(n : T) forall T Hash(T, T).new(T.zero).tap do |dp| while n > 1 i = T.new div[n] dp[i] += 1 n //= i end end end # 素因数(素数の約数) # # ``` # Prime.prime_factor(72) # => [2, 3] # ``` def self.prime_factors(n : T) forall T # n.prime_division.keys.to_set # to_setは遅い Array(T).new.tap do |dp| while n > 1 i = T.new div[n] dp << i if dp.empty? || dp.last != i n //= i end end end # 約数(1と自身を含む) # # ``` # Prime.factors(72) # => [1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72] # ``` def self.factors(n) PrimeLarge.factors(n) end # 素数列挙のイテレータ private class PrimeIterator include Iterator(Int32) getter div : Array(Int32) getter i : Int32 def initialize(@div) @i = 2 end def next while i <= MAX && div[i] != i @i += 1 end if i > MAX stop else begin i ensure @i += 1 end end end end end # 大きな数の素数クラス # # Prime::MAXを超える数を対象 # 試し割法で愚直に求める class PrimeLarge # 素数判定 # # ``` # PrimeLarge.is_prime?(72) # => false # PrimeLarge.is_prime?(97) # => true # ``` def self.is_prime?(n : T) forall T ans = true m = T.new Math.sqrt(n) ans = T.new(2).upto(m).none? do |i| n % i == 0 end end # 素因数分解 # # ``` # PrimeLarge.prime_factors(72) # => { 2 => 3, 3 => 2 } # ``` def self.prime_division(n : T) forall T Hash(T, T).new(T.zero).tap do |dp| m = T.new Math.sqrt(n) T.new(2).upto(m) do |i| while n.divisible_by?(i) dp[i] += 1 n //= i end end dp[n] += 1 if n != 1 end end # 素因数(素数の約数) # # ``` # PrimeLarge.prime_factors # => [2, 3] # ``` def self.prime_factors(n : T) forall T Array(T).new.tap do |dp| m = T.new Math.sqrt(n) T.new(2).upto(m) do |i| while n.divisible_by?(i) dp << i if dp.empty? || dp.last != i n //= i end end dp << n if n != 1 end end # 約数(1と自身を含む) # # ``` # PrimeLarge.factors(72) # => [1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72] # ``` def self.factors(n : T) forall T Array(T).new.tap do |dp| m = T.new Math.sqrt(n) T.new(1).upto(m) do |i| next unless n.divisible_by?(i) dp << i dp << n // i if i * i != n end end.sort end end # 素数関連メソッドの拡張 struct Int # 素数判定 # # ``` # 7.prime? # => true # ``` def is_prime? if self > Prime::MAX PrimeLarge.is_prime?(self) else Prime.is_prime?(self) end end # 素因数分解 # # ``` # 72.prime_division # => {2 => 3, 3 => 2} # ``` def prime_division if self > Prime::MAX PrimeLarge.prime_division(self) else Prime.prime_division(self) end end # 素因数 # # ``` # 72 # => [2, 3] # ``` def prime_factors if self > Prime::MAX PrimeLarge.prime_factors(self) else Prime.prime_factors(self) end end # 約数 # # ``` # 12.factors # => [1, 2, 3, 4, 6, 12] # ``` def factors if self > Prime::MAX PrimeLarge.factors(self) else Prime.factors(self) end end # 三角数 # # Ti = 1+2+3+...+i = i(i+1)//2の時 # 自身以下の最大の三角数のiを求める # 三角数は自身を正の整数に分割できる最大数 def trinum_index (Math.sqrt(self * 8 + 1).to_i64 - 1) // 2 end end a = gets.to_s.chars.map(&.to_i64) n = a.size ans = 0_i64 (1<<(n-1)).times do |s| ans += 1 if calc(a,s).is_prime? end pp ans def calc(a,s) n = a.size ans = 0_i64 cnt = a[0] (n-1).times do |i| if s.bit(i) == 1 ans += cnt cnt = a[i+1] else cnt *= 10 cnt += a[i+1] end end ans + cnt end