結果
問題 | No.1760 Setwise Coprime |
ユーザー | chineristAC |
提出日時 | 2021-11-20 18:12:32 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 153 ms / 2,000 ms |
コード長 | 9,174 bytes |
コンパイル時間 | 337 ms |
コンパイル使用メモリ | 82,768 KB |
実行使用メモリ | 95,196 KB |
最終ジャッジ日時 | 2024-06-11 20:40:25 |
合計ジャッジ時間 | 5,814 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 79 ms
76,832 KB |
testcase_01 | AC | 82 ms
76,928 KB |
testcase_02 | AC | 93 ms
83,716 KB |
testcase_03 | AC | 80 ms
76,904 KB |
testcase_04 | AC | 80 ms
76,788 KB |
testcase_05 | AC | 79 ms
76,952 KB |
testcase_06 | AC | 94 ms
83,528 KB |
testcase_07 | AC | 93 ms
83,244 KB |
testcase_08 | AC | 92 ms
83,280 KB |
testcase_09 | AC | 96 ms
83,752 KB |
testcase_10 | AC | 87 ms
79,308 KB |
testcase_11 | AC | 95 ms
83,896 KB |
testcase_12 | AC | 93 ms
83,444 KB |
testcase_13 | AC | 80 ms
77,712 KB |
testcase_14 | AC | 96 ms
83,728 KB |
testcase_15 | AC | 93 ms
83,332 KB |
testcase_16 | AC | 96 ms
83,716 KB |
testcase_17 | AC | 95 ms
83,576 KB |
testcase_18 | AC | 84 ms
79,248 KB |
testcase_19 | AC | 94 ms
83,116 KB |
testcase_20 | AC | 94 ms
83,144 KB |
testcase_21 | AC | 142 ms
92,984 KB |
testcase_22 | AC | 137 ms
92,120 KB |
testcase_23 | AC | 148 ms
94,304 KB |
testcase_24 | AC | 123 ms
89,416 KB |
testcase_25 | AC | 141 ms
92,892 KB |
testcase_26 | AC | 131 ms
91,288 KB |
testcase_27 | AC | 121 ms
88,112 KB |
testcase_28 | AC | 113 ms
87,032 KB |
testcase_29 | AC | 151 ms
94,388 KB |
testcase_30 | AC | 149 ms
94,308 KB |
testcase_31 | AC | 118 ms
88,576 KB |
testcase_32 | AC | 146 ms
93,548 KB |
testcase_33 | AC | 135 ms
91,144 KB |
testcase_34 | AC | 148 ms
94,352 KB |
testcase_35 | AC | 140 ms
92,756 KB |
testcase_36 | AC | 152 ms
95,140 KB |
testcase_37 | AC | 150 ms
95,196 KB |
testcase_38 | AC | 153 ms
94,908 KB |
ソースコード
mod = 998244353 omega = pow(3,119,mod) rev_omega = pow(omega,mod-2,mod) N = 2*10**5 g1 = [1]*(N+1) # 元テーブル g2 = [1]*(N+1) #逆元テーブル inverse = [1]*(N+1) #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1[i]=( ( g1[i-1] * i ) % mod ) inverse[i]=( ( -inverse[mod % i] * (mod//i) ) % mod ) g2[i]=( (g2[i-1] * inverse[i]) % mod ) inverse[0]=0 _fft_mod = 998244353 _fft_imag = 911660635 _fft_iimag = 86583718 _fft_rate2 = (911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601, 842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899) _fft_irate2 = (86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960, 354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235) _fft_rate3 = (372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099, 183021267, 402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204) _fft_irate3 = (509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500, 771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681) def _butterfly(a): n = len(a) h = (n - 1).bit_length() len_ = 0 while len_ < h: if h - len_ == 1: p = 1 << (h - len_ - 1) rot = 1 for s in range(1 << len_): offset = s << (h - len_) for i in range(p): l = a[i + offset] r = a[i + offset + p] * rot % _fft_mod a[i + offset] = (l + r) % _fft_mod a[i + offset + p] = (l - r) % _fft_mod if s + 1 != (1 << len_): rot *= _fft_rate2[(~s & -~s).bit_length() - 1] rot %= _fft_mod len_ += 1 else: p = 1 << (h - len_ - 2) rot = 1 for s in range(1 << len_): rot2 = rot * rot % _fft_mod rot3 = rot2 * rot % _fft_mod offset = s << (h - len_) for i in range(p): a0 = a[i + offset] a1 = a[i + offset + p] * rot a2 = a[i + offset + p * 2] * rot2 a3 = a[i + offset + p * 3] * rot3 a1na3imag = (a1 - a3) % _fft_mod * _fft_imag a[i + offset] = (a0 + a2 + a1 + a3) % _fft_mod a[i + offset + p] = (a0 + a2 - a1 - a3) % _fft_mod a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % _fft_mod a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % _fft_mod if s + 1 != (1 << len_): rot *= _fft_rate3[(~s & -~s).bit_length() - 1] rot %= _fft_mod len_ += 2 def _butterfly_inv(a): n = len(a) h = (n - 1).bit_length() len_ = h while len_: if len_ == 1: p = 1 << (h - len_) irot = 1 for s in range(1 << (len_ - 1)): offset = s << (h - len_ + 1) for i in range(p): l = a[i + offset] r = a[i + offset + p] a[i + offset] = (l + r) % _fft_mod a[i + offset + p] = (l - r) * irot % _fft_mod if s + 1 != (1 << (len_ - 1)): irot *= _fft_irate2[(~s & -~s).bit_length() - 1] irot %= _fft_mod len_ -= 1 else: p = 1 << (h - len_) irot = 1 for s in range(1 << (len_ - 2)): irot2 = irot * irot % _fft_mod irot3 = irot2 * irot % _fft_mod offset = s << (h - len_ + 2) for i in range(p): a0 = a[i + offset] a1 = a[i + offset + p] a2 = a[i + offset + p * 2] a3 = a[i + offset + p * 3] a2na3iimag = (a2 - a3) * _fft_iimag % _fft_mod a[i + offset] = (a0 + a1 + a2 + a3) % _fft_mod a[i + offset + p] = (a0 - a1 + a2na3iimag) * irot % _fft_mod a[i + offset + p * 2] = (a0 + a1 - a2 - a3) * irot2 % _fft_mod a[i + offset + p * 3] = (a0 - a1 - a2na3iimag) * irot3 % _fft_mod if s + 1 != (1 << (len_ - 1)): irot *= _fft_irate3[(~s & -~s).bit_length() - 1] irot %= _fft_mod len_ -= 2 def _convolution_naive(a, b): n = len(a) m = len(b) ans = [0] * (n + m - 1) if n < m: for j in range(m): for i in range(n): ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod else: for i in range(n): for j in range(m): ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod return ans def _convolution_fft(a, b): a = a.copy() b = b.copy() n = len(a) m = len(b) z = 1 << (n + m - 2).bit_length() a += [0] * (z - n) _butterfly(a) b += [0] * (z - m) _butterfly(b) for i in range(z): a[i] = a[i] * b[i] % _fft_mod _butterfly_inv(a) a = a[:n + m - 1] iz = pow(z, _fft_mod - 2, _fft_mod) for i in range(n + m - 1): a[i] = a[i] * iz % _fft_mod return a def _convolution_square(a): a = a.copy() n = len(a) z = 1 << (2 * n - 2).bit_length() a += [0] * (z - n) _butterfly(a) for i in range(z): a[i] = a[i] * a[i] % _fft_mod _butterfly_inv(a) a = a[:2 * n - 1] iz = pow(z, _fft_mod - 2, _fft_mod) for i in range(2 * n - 1): a[i] = a[i] * iz % _fft_mod return a def convolution(a, b): """It calculates (+, x) convolution in mod 998244353. Given two arrays a[0], a[1], ..., a[n - 1] and b[0], b[1], ..., b[m - 1], it calculates the array c of length n + m - 1, defined by > c[i] = sum(a[j] * b[i - j] for j in range(i + 1)) % 998244353. It returns an empty list if at least one of a and b are empty. Constraints ----------- > len(a) + len(b) <= 8388609 Complexity ---------- > O(n log n), where n = len(a) + len(b). """ n = len(a) m = len(b) if n == 0 or m == 0: return [] if min(n, m) <= 0: return _convolution_naive(a, b) if a is b: return _convolution_square(a) return _convolution_fft(a, b) def cmb(n, r, mod): if ( r<0 or r>n ): return 0 r = min(r, n-r) return g1[n] * g2[r] * g2[n-r] % mod class SegmentTree: def __init__(self, init_val, segfunc, ide_ele): n = len(init_val) self.segfunc = segfunc self.ide_ele = ide_ele self.num = 1 << (n - 1).bit_length() self.tree = [ide_ele] * 2 * self.num self.size = n for i in range(n): self.tree[self.num + i] = init_val[i] for i in range(self.num - 1, 0, -1): self.tree[i] = self.segfunc(self.tree[2 * i], self.tree[2 * i + 1]) import sys,random,bisect from collections import deque,defaultdict from heapq import heapify,heappop,heappush from itertools import permutations from math import log,gcd input = lambda :sys.stdin.readline() mi = lambda :map(int,input().split()) li = lambda :list(mi()) mod = 998244353 M = 2*10**5 i4 = pow(4,mod-2,mod) def zeta(N,_A): A = [_A[i] for i in range(N+1)] sieve = [True for i in range(N+1)] for i in range(2,N+1): if not sieve[i]: continue for j in range(1,N//i+1): sieve[i*j] = False A[j*i] += A[j] A[j*i] %= mod return A def mebius(N,_A): A = [_A[i] for i in range(N+1)] sieve = [True for i in range(N+1)] for i in range(2,N+1): if not sieve[i]: continue for j in range(1,N//i+1)[::-1]: sieve[i*j] = False A[j*i] -= A[j] A[j*i] %= mod return A Mebius = [1 for i in range(M+1)] sieve = [True for i in range(M+1)] for i in range(2,M+1): if not sieve[i]:continue for j in range(i,M+1,i): sieve[j] = False if j%(i*i)==0: Mebius[j] = 0 Mebius[j] *= -1 N = int(input()) A = [0] + [Mebius[i]*pow(2,N//i,mod) for i in range(1,N+1)] #print(A) zA = zeta(N,A) #print(zA) for i in range(N+1): zA[i] = zA[i] * zA[i] % mod #print(zA) mzA = mebius(N,zA) #print(mzA) res = 0 for lcm in range(1,N+1): res += mzA[lcm] * pow(3*i4,N//lcm,mod) % mod res %= mod rest = sum(A)**2 - sum(mzA) % mod rest %= mod res += rest res %= mod C = sum(Mebius[1:N+1]) res += -2 * C * sum(A) + C * C res %= mod print(res)