結果

問題 No.1760 Setwise Coprime
ユーザー chineristACchineristAC
提出日時 2021-11-20 18:12:32
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 153 ms / 2,000 ms
コード長 9,174 bytes
コンパイル時間 337 ms
コンパイル使用メモリ 82,768 KB
実行使用メモリ 95,196 KB
最終ジャッジ日時 2024-06-11 20:40:25
合計ジャッジ時間 5,814 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 79 ms
76,832 KB
testcase_01 AC 82 ms
76,928 KB
testcase_02 AC 93 ms
83,716 KB
testcase_03 AC 80 ms
76,904 KB
testcase_04 AC 80 ms
76,788 KB
testcase_05 AC 79 ms
76,952 KB
testcase_06 AC 94 ms
83,528 KB
testcase_07 AC 93 ms
83,244 KB
testcase_08 AC 92 ms
83,280 KB
testcase_09 AC 96 ms
83,752 KB
testcase_10 AC 87 ms
79,308 KB
testcase_11 AC 95 ms
83,896 KB
testcase_12 AC 93 ms
83,444 KB
testcase_13 AC 80 ms
77,712 KB
testcase_14 AC 96 ms
83,728 KB
testcase_15 AC 93 ms
83,332 KB
testcase_16 AC 96 ms
83,716 KB
testcase_17 AC 95 ms
83,576 KB
testcase_18 AC 84 ms
79,248 KB
testcase_19 AC 94 ms
83,116 KB
testcase_20 AC 94 ms
83,144 KB
testcase_21 AC 142 ms
92,984 KB
testcase_22 AC 137 ms
92,120 KB
testcase_23 AC 148 ms
94,304 KB
testcase_24 AC 123 ms
89,416 KB
testcase_25 AC 141 ms
92,892 KB
testcase_26 AC 131 ms
91,288 KB
testcase_27 AC 121 ms
88,112 KB
testcase_28 AC 113 ms
87,032 KB
testcase_29 AC 151 ms
94,388 KB
testcase_30 AC 149 ms
94,308 KB
testcase_31 AC 118 ms
88,576 KB
testcase_32 AC 146 ms
93,548 KB
testcase_33 AC 135 ms
91,144 KB
testcase_34 AC 148 ms
94,352 KB
testcase_35 AC 140 ms
92,756 KB
testcase_36 AC 152 ms
95,140 KB
testcase_37 AC 150 ms
95,196 KB
testcase_38 AC 153 ms
94,908 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

mod = 998244353
omega = pow(3,119,mod)
rev_omega = pow(omega,mod-2,mod)

N = 2*10**5
g1 = [1]*(N+1) # 元テーブル
g2 = [1]*(N+1) #逆元テーブル
inverse = [1]*(N+1) #逆元テーブル計算用テーブル

for i in range( 2, N + 1 ):
    g1[i]=( ( g1[i-1] * i ) % mod )
    inverse[i]=( ( -inverse[mod % i] * (mod//i) ) % mod )
    g2[i]=( (g2[i-1] * inverse[i]) % mod )
inverse[0]=0

_fft_mod = 998244353
_fft_imag = 911660635
_fft_iimag = 86583718
_fft_rate2 = (911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601,
              842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899)
_fft_irate2 = (86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960,
               354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235)
_fft_rate3 = (372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099,
              183021267, 402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204)
_fft_irate3 = (509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500,
               771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681)
 
 
def _butterfly(a):
    n = len(a)
    h = (n - 1).bit_length()
    len_ = 0
    while len_ < h:
        if h - len_ == 1:
            p = 1 << (h - len_ - 1)
            rot = 1
            for s in range(1 << len_):
                offset = s << (h - len_)
                for i in range(p):
                    l = a[i + offset]
                    r = a[i + offset + p] * rot % _fft_mod
                    a[i + offset] = (l + r) % _fft_mod
                    a[i + offset + p] = (l - r) % _fft_mod
                if s + 1 != (1 << len_):
                    rot *= _fft_rate2[(~s & -~s).bit_length() - 1]
                    rot %= _fft_mod
            len_ += 1
        else:
            p = 1 << (h - len_ - 2)
            rot = 1
            for s in range(1 << len_):
                rot2 = rot * rot % _fft_mod
                rot3 = rot2 * rot % _fft_mod
                offset = s << (h - len_)
                for i in range(p):
                    a0 = a[i + offset]
                    a1 = a[i + offset + p] * rot
                    a2 = a[i + offset + p * 2] * rot2
                    a3 = a[i + offset + p * 3] * rot3
                    a1na3imag = (a1 - a3) % _fft_mod * _fft_imag
                    a[i + offset] = (a0 + a2 + a1 + a3) % _fft_mod
                    a[i + offset + p] = (a0 + a2 - a1 - a3) % _fft_mod
                    a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % _fft_mod
                    a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % _fft_mod
                if s + 1 != (1 << len_):
                    rot *= _fft_rate3[(~s & -~s).bit_length() - 1]
                    rot %= _fft_mod
            len_ += 2
 
 
def _butterfly_inv(a):
    n = len(a)
    h = (n - 1).bit_length()
    len_ = h
    while len_:
        if len_ == 1:
            p = 1 << (h - len_)
            irot = 1
            for s in range(1 << (len_ - 1)):
                offset = s << (h - len_ + 1)
                for i in range(p):
                    l = a[i + offset]
                    r = a[i + offset + p]
                    a[i + offset] = (l + r) % _fft_mod
                    a[i + offset + p] = (l - r) * irot % _fft_mod
                if s + 1 != (1 << (len_ - 1)):
                    irot *= _fft_irate2[(~s & -~s).bit_length() - 1]
                    irot %= _fft_mod
            len_ -= 1
        else:
            p = 1 << (h - len_)
            irot = 1
            for s in range(1 << (len_ - 2)):
                irot2 = irot * irot % _fft_mod
                irot3 = irot2 * irot % _fft_mod
                offset = s << (h - len_ + 2)
                for i in range(p):
                    a0 = a[i + offset]
                    a1 = a[i + offset + p]
                    a2 = a[i + offset + p * 2]
                    a3 = a[i + offset + p * 3]
                    a2na3iimag = (a2 - a3) * _fft_iimag % _fft_mod
                    a[i + offset] = (a0 + a1 + a2 + a3) % _fft_mod
                    a[i + offset + p] = (a0 - a1 +
                                         a2na3iimag) * irot % _fft_mod
                    a[i + offset + p * 2] = (a0 + a1 -
                                             a2 - a3) * irot2 % _fft_mod
                    a[i + offset + p * 3] = (a0 - a1 -
                                             a2na3iimag) * irot3 % _fft_mod
                if s + 1 != (1 << (len_ - 1)):
                    irot *= _fft_irate3[(~s & -~s).bit_length() - 1]
                    irot %= _fft_mod
            len_ -= 2
 
 
def _convolution_naive(a, b):
    n = len(a)
    m = len(b)
    ans = [0] * (n + m - 1)
    if n < m:
        for j in range(m):
            for i in range(n):
                ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod
    else:
        for i in range(n):
            for j in range(m):
                ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod
    return ans
 
 
def _convolution_fft(a, b):
    a = a.copy()
    b = b.copy()
    n = len(a)
    m = len(b)
    z = 1 << (n + m - 2).bit_length()
    a += [0] * (z - n)
    _butterfly(a)
    b += [0] * (z - m)
    _butterfly(b)
    for i in range(z):
        a[i] = a[i] * b[i] % _fft_mod
    _butterfly_inv(a)
    a = a[:n + m - 1]
    iz = pow(z, _fft_mod - 2, _fft_mod)
    for i in range(n + m - 1):
        a[i] = a[i] * iz % _fft_mod
    return a
 
 
def _convolution_square(a):
    a = a.copy()
    n = len(a)
    z = 1 << (2 * n - 2).bit_length()
    a += [0] * (z - n)
    _butterfly(a)
    for i in range(z):
        a[i] = a[i] * a[i] % _fft_mod
    _butterfly_inv(a)
    a = a[:2 * n - 1]
    iz = pow(z, _fft_mod - 2, _fft_mod)
    for i in range(2 * n - 1):
        a[i] = a[i] * iz % _fft_mod
    return a
 
 
def convolution(a, b):
    """It calculates (+, x) convolution in mod 998244353. 
    Given two arrays a[0], a[1], ..., a[n - 1] and b[0], b[1], ..., b[m - 1], 
    it calculates the array c of length n + m - 1, defined by
 
    >   c[i] = sum(a[j] * b[i - j] for j in range(i + 1)) % 998244353.
 
    It returns an empty list if at least one of a and b are empty.
 
    Constraints
    -----------
 
    >   len(a) + len(b) <= 8388609
 
    Complexity
    ----------
 
    >   O(n log n), where n = len(a) + len(b).
    """
    n = len(a)
    m = len(b)
    if n == 0 or m == 0:
        return []
    if min(n, m) <= 0:
        return _convolution_naive(a, b)
    if a is b:
        return _convolution_square(a)
    return _convolution_fft(a, b)

def cmb(n, r, mod):
    if ( r<0 or r>n ):
        return 0
    r = min(r, n-r)
    return g1[n] * g2[r] * g2[n-r] % mod

class SegmentTree:
    def __init__(self, init_val, segfunc, ide_ele):
        n = len(init_val)
        self.segfunc = segfunc
        self.ide_ele = ide_ele
        self.num = 1 << (n - 1).bit_length()
        self.tree = [ide_ele] * 2 * self.num
        self.size = n
        for i in range(n):
            self.tree[self.num + i] = init_val[i]
        for i in range(self.num - 1, 0, -1):
            self.tree[i] = self.segfunc(self.tree[2 * i], self.tree[2 * i + 1])

import sys,random,bisect
from collections import deque,defaultdict
from heapq import heapify,heappop,heappush
from itertools import permutations
from math import log,gcd

input = lambda :sys.stdin.readline()
mi = lambda :map(int,input().split())
li = lambda :list(mi())

mod = 998244353
M = 2*10**5

i4 = pow(4,mod-2,mod)

def zeta(N,_A):
    A = [_A[i] for i in range(N+1)]
    sieve = [True for i in range(N+1)]
    for i in range(2,N+1):
        if not sieve[i]:
            continue
        for j in range(1,N//i+1):
            sieve[i*j] = False
            A[j*i] += A[j]
            A[j*i] %= mod
    return A

def mebius(N,_A):
    A = [_A[i] for i in range(N+1)]
    sieve = [True for i in range(N+1)]
    for i in range(2,N+1):
        if not sieve[i]:
            continue
        for j in range(1,N//i+1)[::-1]:
            sieve[i*j] = False
            A[j*i] -= A[j]
            A[j*i] %= mod
    return A

Mebius = [1 for i in range(M+1)]
sieve = [True for i in range(M+1)]
for i in range(2,M+1):
    if not sieve[i]:continue
    for j in range(i,M+1,i):
        sieve[j] = False
        if j%(i*i)==0:
            Mebius[j] = 0
        Mebius[j] *= -1

N = int(input())

A = [0] + [Mebius[i]*pow(2,N//i,mod) for i in range(1,N+1)]
#print(A)

zA = zeta(N,A)
#print(zA)
for i in range(N+1):
    zA[i] = zA[i] * zA[i] % mod
#print(zA)
mzA = mebius(N,zA)
#print(mzA)
res = 0
for lcm in range(1,N+1):
    res += mzA[lcm] * pow(3*i4,N//lcm,mod) % mod
    res %= mod

rest = sum(A)**2 - sum(mzA) % mod
rest %= mod

res += rest
res %= mod

C = sum(Mebius[1:N+1])
res += -2 * C * sum(A) + C * C
res %= mod

print(res)
0