結果
問題 | No.1758 Lazy Segment Tree...? |
ユーザー | 👑 emthrm |
提出日時 | 2021-11-20 19:48:18 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,170 ms / 8,000 ms |
コード長 | 8,058 bytes |
コンパイル時間 | 2,663 ms |
コンパイル使用メモリ | 210,808 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-11 22:40:01 |
合計ジャッジ時間 | 18,931 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 7 ms
5,376 KB |
testcase_03 | AC | 1 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 3 ms
5,376 KB |
testcase_08 | AC | 3 ms
5,376 KB |
testcase_09 | AC | 9 ms
5,376 KB |
testcase_10 | AC | 6 ms
5,376 KB |
testcase_11 | AC | 7 ms
5,376 KB |
testcase_12 | AC | 7 ms
5,376 KB |
testcase_13 | AC | 9 ms
5,376 KB |
testcase_14 | AC | 4 ms
5,376 KB |
testcase_15 | AC | 7 ms
5,376 KB |
testcase_16 | AC | 6 ms
5,376 KB |
testcase_17 | AC | 9 ms
5,376 KB |
testcase_18 | AC | 6 ms
5,376 KB |
testcase_19 | AC | 5 ms
5,376 KB |
testcase_20 | AC | 6 ms
5,376 KB |
testcase_21 | AC | 852 ms
5,376 KB |
testcase_22 | AC | 655 ms
5,376 KB |
testcase_23 | AC | 890 ms
5,376 KB |
testcase_24 | AC | 774 ms
5,376 KB |
testcase_25 | AC | 571 ms
5,376 KB |
testcase_26 | AC | 952 ms
5,376 KB |
testcase_27 | AC | 669 ms
5,376 KB |
testcase_28 | AC | 942 ms
5,376 KB |
testcase_29 | AC | 929 ms
5,376 KB |
testcase_30 | AC | 1,048 ms
5,376 KB |
testcase_31 | AC | 734 ms
5,376 KB |
testcase_32 | AC | 869 ms
5,376 KB |
testcase_33 | AC | 826 ms
5,376 KB |
testcase_34 | AC | 737 ms
5,376 KB |
testcase_35 | AC | 568 ms
5,376 KB |
testcase_36 | AC | 1,170 ms
5,376 KB |
testcase_37 | AC | 1,129 ms
5,376 KB |
testcase_38 | AC | 1,030 ms
5,376 KB |
ソースコード
#define _USE_MATH_DEFINES #include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 998244353; constexpr int DY[]{1, 0, -1, 0}, DX[]{0, -1, 0, 1}; constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}, DX8[]{0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template <int M> struct MInt { unsigned int val; MInt(): val(0) {} MInt(long long x) : val(x >= 0 ? x % M : x % M + M) {} static constexpr int get_mod() { return M; } static void set_mod(int divisor) { assert(divisor == M); } static void init(int x = 10000000) { inv(x, true); fact(x); fact_inv(x); } static MInt inv(int x, bool init = false) { // assert(0 <= x && x < M && std::__gcd(x, M) == 1); static std::vector<MInt> inverse{0, 1}; int prev = inverse.size(); if (init && x >= prev) { // "x!" and "M" must be disjoint. inverse.resize(x + 1); for (int i = prev; i <= x; ++i) inverse[i] = -inverse[M % i] * (M / i); } if (x < inverse.size()) return inverse[x]; unsigned int a = x, b = M; int u = 1, v = 0; while (b) { unsigned int q = a / b; std::swap(a -= q * b, b); std::swap(u -= q * v, v); } return u; } static MInt fact(int x) { static std::vector<MInt> f{1}; int prev = f.size(); if (x >= prev) { f.resize(x + 1); for (int i = prev; i <= x; ++i) f[i] = f[i - 1] * i; } return f[x]; } static MInt fact_inv(int x) { static std::vector<MInt> finv{1}; int prev = finv.size(); if (x >= prev) { finv.resize(x + 1); finv[x] = inv(fact(x).val); for (int i = x; i > prev; --i) finv[i - 1] = finv[i] * i; } return finv[x]; } static MInt nCk(int n, int k) { if (n < 0 || n < k || k < 0) return 0; if (n - k > k) k = n - k; return fact(n) * fact_inv(k) * fact_inv(n - k); } static MInt nPk(int n, int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); } static MInt nHk(int n, int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); } static MInt large_nCk(long long n, int k) { if (n < 0 || n < k || k < 0) return 0; inv(k, true); MInt res = 1; for (int i = 1; i <= k; ++i) res *= inv(i) * n--; return res; } MInt pow(long long exponent) const { MInt tmp = *this, res = 1; while (exponent > 0) { if (exponent & 1) res *= tmp; tmp *= tmp; exponent >>= 1; } return res; } MInt &operator+=(const MInt &x) { if((val += x.val) >= M) val -= M; return *this; } MInt &operator-=(const MInt &x) { if((val += M - x.val) >= M) val -= M; return *this; } MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % M; return *this; } MInt &operator/=(const MInt &x) { return *this *= inv(x.val); } bool operator==(const MInt &x) const { return val == x.val; } bool operator!=(const MInt &x) const { return val != x.val; } bool operator<(const MInt &x) const { return val < x.val; } bool operator<=(const MInt &x) const { return val <= x.val; } bool operator>(const MInt &x) const { return val > x.val; } bool operator>=(const MInt &x) const { return val >= x.val; } MInt &operator++() { if (++val == M) val = 0; return *this; } MInt operator++(int) { MInt res = *this; ++*this; return res; } MInt &operator--() { val = (val == 0 ? M : val) - 1; return *this; } MInt operator--(int) { MInt res = *this; --*this; return res; } MInt operator+() const { return *this; } MInt operator-() const { return MInt(val ? M - val : 0); } MInt operator+(const MInt &x) const { return MInt(*this) += x; } MInt operator-(const MInt &x) const { return MInt(*this) -= x; } MInt operator*(const MInt &x) const { return MInt(*this) *= x; } MInt operator/(const MInt &x) const { return MInt(*this) /= x; } friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; } friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; } }; namespace std { template <int M> MInt<M> abs(const MInt<M> &x) { return x; } } using ModInt = MInt<MOD>; template <typename T> struct Matrix { Matrix(int m, int n, T val = 0) : dat(m, std::vector<T>(n, val)) {} int height() const { return dat.size(); } int width() const { return dat.front().size(); } Matrix pow(long long exponent) const { int n = height(); Matrix<T> tmp = *this, res(n, n, 0); for (int i = 0; i < n; ++i) res[i][i] = 1; while (exponent > 0) { if (exponent & 1) res *= tmp; tmp *= tmp; exponent >>= 1; } return res; } inline const std::vector<T> &operator[](const int idx) const { return dat[idx]; } inline std::vector<T> &operator[](const int idx) { return dat[idx]; } Matrix &operator=(const Matrix &x) { int m = x.height(), n = x.width(); dat.resize(m, std::vector<T>(n)); for (int i = 0; i < m; ++i) for (int j = 0; j < n; ++j) dat[i][j] = x[i][j]; return *this; } Matrix &operator+=(const Matrix &x) { int m = height(), n = width(); for (int i = 0; i < m; ++i) for (int j = 0; j < n; ++j) dat[i][j] += x[i][j]; return *this; } Matrix &operator-=(const Matrix &x) { int m = height(), n = width(); for (int i = 0; i < m; ++i) for (int j = 0; j < n; ++j) dat[i][j] -= x[i][j]; return *this; } Matrix &operator*=(const Matrix &x) { int m = height(), n = x.width(), l = width(); std::vector<std::vector<T>> res(m, std::vector<T>(n, 0)); for (int i = 0; i < m; ++i) for (int j = 0; j < n; ++j) { for (int k = 0; k < l; ++k) res[i][j] += dat[i][k] * x[k][j]; } std::swap(dat, res); return *this; } Matrix operator+(const Matrix &x) const { return Matrix(*this) += x; } Matrix operator-(const Matrix &x) const { return Matrix(*this) -= x; } Matrix operator*(const Matrix &x) const { return Matrix(*this) *= x; } private: std::vector<std::vector<T>> dat; }; int main() { // 0 <= u < v < N に対して // Y := (v - u)(N + 1 - (v - u)) とおくと // DP_{u, v}[i + 1][j] = DP_{u, v}[i][j] * (N(N + 1) - Y) + DP_{u, v}[i][1 - j] * Y が成り立つ. // 答えは \sum_{0 <= u < v < N} \sum_{i = 1}^Q DP_{u, v}[i - 1][1] * (u + 1)(N - v) * (N(N + 1))^{Q - i} である. // l = 1, 2,..., N - 1 に対して // DP_l[i + 1][j] = DP_l[i][j] * (N(N + 1) - l(N + 1 - l)) + DP_l[i][1 - j] * l(N + 1 - l) が成り立つ. // f(l) := \sum_{u = 0}^{N - l - 1} (u + 1)(N - (u + l)) // = (N - l)(N - l + 1)(N - l + 2) / 6 とおく. // 答えは \sum_{l = 1}^{N - 1} \sum_{i = 1}^Q DP_l[i - 1][1] * f(l) * (N(N + 1))^{Q - i} である. // l を固定する. // A_j := \sum_{i = 1}^j DP_l[i - 1][1] * f(l) * (N(N + 1))^{Q - i} とおくと, // A_{i + 1} N(N + 1) 0 f(l) A_i // DP[i + 1][0] = 0 N(N + 1) - l(N + 1 - l) l(N + 1 - l) * DP[i][0] // DP[i + 1][1] 0 l(N + 1 - l) N(N + 1) - l(N + 1 - l) DP[1][1] // が成り立つ. int n, q; cin >> n >> q; ModInt ans = 0; FOR(l, 1, n) { Matrix<ModInt> matrix(3, 3); matrix[0][0] = n * (n + 1LL); matrix[0][2] = (n - l) * (n - l + 1LL) * (n - l + 2) / 6; matrix[1][1] = n * (n + 1LL) - l * (n + 1LL - l); matrix[1][2] = l * (n + 1LL - l); matrix[2][1] = matrix[1][2]; matrix[2][2] = matrix[1][1]; ans += matrix.pow(q)[0][1]; } cout << ans / 2 << '\n'; return 0; }