結果
問題 | No.1760 Setwise Coprime |
ユーザー | 👑 emthrm |
提出日時 | 2021-11-21 02:01:06 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 30 ms / 2,000 ms |
コード長 | 8,120 bytes |
コンパイル時間 | 2,347 ms |
コンパイル使用メモリ | 209,704 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-06-12 22:01:07 |
合計ジャッジ時間 | 4,106 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,948 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 3 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | AC | 2 ms
6,940 KB |
testcase_09 | AC | 3 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,940 KB |
testcase_11 | AC | 2 ms
6,944 KB |
testcase_12 | AC | 2 ms
6,944 KB |
testcase_13 | AC | 2 ms
6,940 KB |
testcase_14 | AC | 2 ms
6,940 KB |
testcase_15 | AC | 3 ms
6,940 KB |
testcase_16 | AC | 2 ms
6,940 KB |
testcase_17 | AC | 2 ms
6,940 KB |
testcase_18 | AC | 2 ms
6,940 KB |
testcase_19 | AC | 2 ms
6,940 KB |
testcase_20 | AC | 2 ms
6,944 KB |
testcase_21 | AC | 23 ms
6,940 KB |
testcase_22 | AC | 21 ms
6,940 KB |
testcase_23 | AC | 27 ms
6,940 KB |
testcase_24 | AC | 13 ms
6,940 KB |
testcase_25 | AC | 23 ms
6,940 KB |
testcase_26 | AC | 18 ms
6,944 KB |
testcase_27 | AC | 9 ms
6,944 KB |
testcase_28 | AC | 5 ms
6,944 KB |
testcase_29 | AC | 27 ms
6,944 KB |
testcase_30 | AC | 27 ms
6,940 KB |
testcase_31 | AC | 10 ms
6,940 KB |
testcase_32 | AC | 25 ms
6,944 KB |
testcase_33 | AC | 17 ms
6,940 KB |
testcase_34 | AC | 28 ms
6,940 KB |
testcase_35 | AC | 22 ms
6,944 KB |
testcase_36 | AC | 30 ms
6,940 KB |
testcase_37 | AC | 30 ms
6,940 KB |
testcase_38 | AC | 30 ms
6,940 KB |
ソースコード
#define _USE_MATH_DEFINES #include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 998244353; constexpr int DY[]{1, 0, -1, 0}, DX[]{0, -1, 0, 1}; constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}, DX8[]{0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template <int M> struct MInt { unsigned int val; MInt(): val(0) {} MInt(long long x) : val(x >= 0 ? x % M : x % M + M) {} static constexpr int get_mod() { return M; } static void set_mod(int divisor) { assert(divisor == M); } static void init(int x = 10000000) { inv(x, true); fact(x); fact_inv(x); } static MInt inv(int x, bool init = false) { // assert(0 <= x && x < M && std::__gcd(x, M) == 1); static std::vector<MInt> inverse{0, 1}; int prev = inverse.size(); if (init && x >= prev) { // "x!" and "M" must be disjoint. inverse.resize(x + 1); for (int i = prev; i <= x; ++i) inverse[i] = -inverse[M % i] * (M / i); } if (x < inverse.size()) return inverse[x]; unsigned int a = x, b = M; int u = 1, v = 0; while (b) { unsigned int q = a / b; std::swap(a -= q * b, b); std::swap(u -= q * v, v); } return u; } static MInt fact(int x) { static std::vector<MInt> f{1}; int prev = f.size(); if (x >= prev) { f.resize(x + 1); for (int i = prev; i <= x; ++i) f[i] = f[i - 1] * i; } return f[x]; } static MInt fact_inv(int x) { static std::vector<MInt> finv{1}; int prev = finv.size(); if (x >= prev) { finv.resize(x + 1); finv[x] = inv(fact(x).val); for (int i = x; i > prev; --i) finv[i - 1] = finv[i] * i; } return finv[x]; } static MInt nCk(int n, int k) { if (n < 0 || n < k || k < 0) return 0; if (n - k > k) k = n - k; return fact(n) * fact_inv(k) * fact_inv(n - k); } static MInt nPk(int n, int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); } static MInt nHk(int n, int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); } static MInt large_nCk(long long n, int k) { if (n < 0 || n < k || k < 0) return 0; inv(k, true); MInt res = 1; for (int i = 1; i <= k; ++i) res *= inv(i) * n--; return res; } MInt pow(long long exponent) const { MInt tmp = *this, res = 1; while (exponent > 0) { if (exponent & 1) res *= tmp; tmp *= tmp; exponent >>= 1; } return res; } MInt &operator+=(const MInt &x) { if((val += x.val) >= M) val -= M; return *this; } MInt &operator-=(const MInt &x) { if((val += M - x.val) >= M) val -= M; return *this; } MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % M; return *this; } MInt &operator/=(const MInt &x) { return *this *= inv(x.val); } bool operator==(const MInt &x) const { return val == x.val; } bool operator!=(const MInt &x) const { return val != x.val; } bool operator<(const MInt &x) const { return val < x.val; } bool operator<=(const MInt &x) const { return val <= x.val; } bool operator>(const MInt &x) const { return val > x.val; } bool operator>=(const MInt &x) const { return val >= x.val; } MInt &operator++() { if (++val == M) val = 0; return *this; } MInt operator++(int) { MInt res = *this; ++*this; return res; } MInt &operator--() { val = (val == 0 ? M : val) - 1; return *this; } MInt operator--(int) { MInt res = *this; --*this; return res; } MInt operator+() const { return *this; } MInt operator-() const { return MInt(val ? M - val : 0); } MInt operator+(const MInt &x) const { return MInt(*this) += x; } MInt operator-(const MInt &x) const { return MInt(*this) -= x; } MInt operator*(const MInt &x) const { return MInt(*this) *= x; } MInt operator/(const MInt &x) const { return MInt(*this) /= x; } friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; } friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; } }; namespace std { template <int M> MInt<M> abs(const MInt<M> &x) { return x; } } using ModInt = MInt<MOD>; std::vector<int> mobius_mu_init(const int n) { std::vector<int> is_prime(n + 1, true); is_prime[0] = false; if (n >= 1) { is_prime[1] = false; } std::vector<int> mu(n + 1, 1); mu[0] = 0; for (int i = 2; i <= n; ++i) { if (is_prime[i]) { mu[i] = -mu[i]; for (int j = i * 2; j <= n; j += i) { is_prime[j] = false; mu[j] = ((j / i) % i == 0 ? 0 : -mu[j]); } } } return mu; } template <typename T> std::vector<T> lcm_convolution(std::vector<T> a, std::vector<T> b) { const int n = (a.size() - 1) * (b.size() - 1); a.resize(n + 1, 0); b.resize(n + 1, 0); const auto transform = [n](std::vector<T> &v) -> void { for (int i = n; i >= 1; --i) { for (int j = i << 1; j <= n; j += i) { v[j] += v[i]; } } }; transform(a); transform(b); for (int i = 1; i <= n; ++i) { a[i] *= b[i]; } for (int i = 1; i <= n; ++i) { for (int j = i << 1; j <= n; j += i) { a[j] -= a[i]; } } return a; } int main() { // int ans[N]{}; // auto f = [&](auto&& f, int i, int a, int b) -> void { // if (a == 1 && b == 1) ++ans[i - 1]; // if (i == N) return; // f(f, i + 1, a, b); // f(f, i + 1, gcd(a, i), b); // f(f, i + 1, a, gcd(b, i)); // }; // f(f, 1, 0, 0); // REP(i, N) cout << ans[i] << " \n"[i == N]; // ModInt dp[N + 1][N + 1]{}; // for (int a = N; a >= 1; --a) for (int b = N; b >= 1; --b) { // for (int c = a; c <= N; c += a) for (int d = b; d <= N; d += b) { // dp[a][b] -= dp[c][d]; // } // const int z = N / lcm(a, b), x = N / a - z, y = N / b - z; // dp[a][b] += ModInt(3).pow(z) * ModInt(2).pow(x + y) // - ModInt(2).pow(x + z) // - ModInt(2).pow(y + z) // + 1; // } // cout << dp[1][1] << '\n'; // const vector<int> mu = mobius_mu_init(N); // ModInt ans = 0; // for (int a = 1; a <= N; ++a) for (int b = 1; b <= N; ++b) { // const int z = N / lcm(a, b), x = N / a - z, y = N / b - z; // const ModInt g = ModInt(3).pow(z) * ModInt(2).pow(x + y) // - ModInt(2).pow(x + z) // - ModInt(2).pow(y + z) // + 1; // ans += g * mu[a] * mu[b]; // } int n; cin >> n; vector<ModInt> p2(n + 1, 1); REP(i, n) p2[i + 1] = p2[i] * 2; const vector<int> mu = mobius_mu_init(n); ModInt ans = 0; FOR(i, 1, n + 1) ans += (-p2[n / i] + 1) * mu[i]; ans *= accumulate(ALL(mu), ModInt(0)); ModInt tmp = 0; FOR(i, 1, n + 1) tmp += p2[n / i] * mu[i]; ans -= tmp * accumulate(ALL(mu), ModInt(0)); // 1. O(n^2 log{n}) // FOR(i, 1, n + 1) FOR(j, 1, n + 1) { // ans += p2[n / i] * p2[n / j] * (ModInt(3) / 4).pow(n / lcm(i, j)) * mu[i] * mu[j]; // } vector<ModInt> u(n + 1, 0); FOR(i, 1, n + 1) u[i] = p2[n / i] * mu[i]; // 2. 添え字 lcm での畳み込み // const vector<ModInt> v = lcm_convolution(u, u); // FOR(i, 1, v.size()) ans += v[i] * (ModInt(3) / 4).pow(n / i); // 3. 想定解 ans += accumulate(ALL(u), ModInt(0)) * accumulate(ALL(u), ModInt(0)); for (int i = n; i >= 1; --i) { for (int j = i << 1; j <= n; j += i) { u[j] += u[i]; } } REP(i, n + 1) u[i] *= u[i]; FOR(i, 1, n + 1) for (int j = i << 1; j <= n; j += i) u[j] -= u[i]; FOR(i, 1, n + 1) ans += u[i] * (ModInt(3) / 4).pow(n / i); ans -= accumulate(ALL(u), ModInt(0)); cout << ans << '\n'; return 0; }