結果
| 問題 |
No.1760 Setwise Coprime
|
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2021-11-21 02:01:06 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 39 ms / 2,000 ms |
| コード長 | 8,120 bytes |
| コンパイル時間 | 2,409 ms |
| コンパイル使用メモリ | 203,552 KB |
| 最終ジャッジ日時 | 2025-01-25 23:51:19 |
|
ジャッジサーバーID (参考情報) |
judge7 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 36 |
ソースコード
#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
constexpr int DY[]{1, 0, -1, 0}, DX[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}, DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <int M>
struct MInt {
unsigned int val;
MInt(): val(0) {}
MInt(long long x) : val(x >= 0 ? x % M : x % M + M) {}
static constexpr int get_mod() { return M; }
static void set_mod(int divisor) { assert(divisor == M); }
static void init(int x = 10000000) { inv(x, true); fact(x); fact_inv(x); }
static MInt inv(int x, bool init = false) {
// assert(0 <= x && x < M && std::__gcd(x, M) == 1);
static std::vector<MInt> inverse{0, 1};
int prev = inverse.size();
if (init && x >= prev) {
// "x!" and "M" must be disjoint.
inverse.resize(x + 1);
for (int i = prev; i <= x; ++i) inverse[i] = -inverse[M % i] * (M / i);
}
if (x < inverse.size()) return inverse[x];
unsigned int a = x, b = M; int u = 1, v = 0;
while (b) {
unsigned int q = a / b;
std::swap(a -= q * b, b);
std::swap(u -= q * v, v);
}
return u;
}
static MInt fact(int x) {
static std::vector<MInt> f{1};
int prev = f.size();
if (x >= prev) {
f.resize(x + 1);
for (int i = prev; i <= x; ++i) f[i] = f[i - 1] * i;
}
return f[x];
}
static MInt fact_inv(int x) {
static std::vector<MInt> finv{1};
int prev = finv.size();
if (x >= prev) {
finv.resize(x + 1);
finv[x] = inv(fact(x).val);
for (int i = x; i > prev; --i) finv[i - 1] = finv[i] * i;
}
return finv[x];
}
static MInt nCk(int n, int k) {
if (n < 0 || n < k || k < 0) return 0;
if (n - k > k) k = n - k;
return fact(n) * fact_inv(k) * fact_inv(n - k);
}
static MInt nPk(int n, int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); }
static MInt nHk(int n, int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); }
static MInt large_nCk(long long n, int k) {
if (n < 0 || n < k || k < 0) return 0;
inv(k, true);
MInt res = 1;
for (int i = 1; i <= k; ++i) res *= inv(i) * n--;
return res;
}
MInt pow(long long exponent) const {
MInt tmp = *this, res = 1;
while (exponent > 0) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
exponent >>= 1;
}
return res;
}
MInt &operator+=(const MInt &x) { if((val += x.val) >= M) val -= M; return *this; }
MInt &operator-=(const MInt &x) { if((val += M - x.val) >= M) val -= M; return *this; }
MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % M; return *this; }
MInt &operator/=(const MInt &x) { return *this *= inv(x.val); }
bool operator==(const MInt &x) const { return val == x.val; }
bool operator!=(const MInt &x) const { return val != x.val; }
bool operator<(const MInt &x) const { return val < x.val; }
bool operator<=(const MInt &x) const { return val <= x.val; }
bool operator>(const MInt &x) const { return val > x.val; }
bool operator>=(const MInt &x) const { return val >= x.val; }
MInt &operator++() { if (++val == M) val = 0; return *this; }
MInt operator++(int) { MInt res = *this; ++*this; return res; }
MInt &operator--() { val = (val == 0 ? M : val) - 1; return *this; }
MInt operator--(int) { MInt res = *this; --*this; return res; }
MInt operator+() const { return *this; }
MInt operator-() const { return MInt(val ? M - val : 0); }
MInt operator+(const MInt &x) const { return MInt(*this) += x; }
MInt operator-(const MInt &x) const { return MInt(*this) -= x; }
MInt operator*(const MInt &x) const { return MInt(*this) *= x; }
MInt operator/(const MInt &x) const { return MInt(*this) /= x; }
friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; }
friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; }
};
namespace std { template <int M> MInt<M> abs(const MInt<M> &x) { return x; } }
using ModInt = MInt<MOD>;
std::vector<int> mobius_mu_init(const int n) {
std::vector<int> is_prime(n + 1, true);
is_prime[0] = false;
if (n >= 1) {
is_prime[1] = false;
}
std::vector<int> mu(n + 1, 1);
mu[0] = 0;
for (int i = 2; i <= n; ++i) {
if (is_prime[i]) {
mu[i] = -mu[i];
for (int j = i * 2; j <= n; j += i) {
is_prime[j] = false;
mu[j] = ((j / i) % i == 0 ? 0 : -mu[j]);
}
}
}
return mu;
}
template <typename T>
std::vector<T> lcm_convolution(std::vector<T> a, std::vector<T> b) {
const int n = (a.size() - 1) * (b.size() - 1);
a.resize(n + 1, 0);
b.resize(n + 1, 0);
const auto transform = [n](std::vector<T> &v) -> void {
for (int i = n; i >= 1; --i) {
for (int j = i << 1; j <= n; j += i) {
v[j] += v[i];
}
}
};
transform(a);
transform(b);
for (int i = 1; i <= n; ++i) {
a[i] *= b[i];
}
for (int i = 1; i <= n; ++i) {
for (int j = i << 1; j <= n; j += i) {
a[j] -= a[i];
}
}
return a;
}
int main() {
// int ans[N]{};
// auto f = [&](auto&& f, int i, int a, int b) -> void {
// if (a == 1 && b == 1) ++ans[i - 1];
// if (i == N) return;
// f(f, i + 1, a, b);
// f(f, i + 1, gcd(a, i), b);
// f(f, i + 1, a, gcd(b, i));
// };
// f(f, 1, 0, 0);
// REP(i, N) cout << ans[i] << " \n"[i == N];
// ModInt dp[N + 1][N + 1]{};
// for (int a = N; a >= 1; --a) for (int b = N; b >= 1; --b) {
// for (int c = a; c <= N; c += a) for (int d = b; d <= N; d += b) {
// dp[a][b] -= dp[c][d];
// }
// const int z = N / lcm(a, b), x = N / a - z, y = N / b - z;
// dp[a][b] += ModInt(3).pow(z) * ModInt(2).pow(x + y)
// - ModInt(2).pow(x + z)
// - ModInt(2).pow(y + z)
// + 1;
// }
// cout << dp[1][1] << '\n';
// const vector<int> mu = mobius_mu_init(N);
// ModInt ans = 0;
// for (int a = 1; a <= N; ++a) for (int b = 1; b <= N; ++b) {
// const int z = N / lcm(a, b), x = N / a - z, y = N / b - z;
// const ModInt g = ModInt(3).pow(z) * ModInt(2).pow(x + y)
// - ModInt(2).pow(x + z)
// - ModInt(2).pow(y + z)
// + 1;
// ans += g * mu[a] * mu[b];
// }
int n; cin >> n;
vector<ModInt> p2(n + 1, 1);
REP(i, n) p2[i + 1] = p2[i] * 2;
const vector<int> mu = mobius_mu_init(n);
ModInt ans = 0;
FOR(i, 1, n + 1) ans += (-p2[n / i] + 1) * mu[i];
ans *= accumulate(ALL(mu), ModInt(0));
ModInt tmp = 0;
FOR(i, 1, n + 1) tmp += p2[n / i] * mu[i];
ans -= tmp * accumulate(ALL(mu), ModInt(0));
// 1. O(n^2 log{n})
// FOR(i, 1, n + 1) FOR(j, 1, n + 1) {
// ans += p2[n / i] * p2[n / j] * (ModInt(3) / 4).pow(n / lcm(i, j)) * mu[i] * mu[j];
// }
vector<ModInt> u(n + 1, 0);
FOR(i, 1, n + 1) u[i] = p2[n / i] * mu[i];
// 2. 添え字 lcm での畳み込み
// const vector<ModInt> v = lcm_convolution(u, u);
// FOR(i, 1, v.size()) ans += v[i] * (ModInt(3) / 4).pow(n / i);
// 3. 想定解
ans += accumulate(ALL(u), ModInt(0)) * accumulate(ALL(u), ModInt(0));
for (int i = n; i >= 1; --i) {
for (int j = i << 1; j <= n; j += i) {
u[j] += u[i];
}
}
REP(i, n + 1) u[i] *= u[i];
FOR(i, 1, n + 1) for (int j = i << 1; j <= n; j += i) u[j] -= u[i];
FOR(i, 1, n + 1) ans += u[i] * (ModInt(3) / 4).pow(n / i);
ans -= accumulate(ALL(u), ModInt(0));
cout << ans << '\n';
return 0;
}
emthrm