結果
| 問題 |
No.1195 数え上げを愛したい(文字列編)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-11-21 17:37:57 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,852 ms / 3,000 ms |
| コード長 | 5,813 bytes |
| コンパイル時間 | 3,069 ms |
| コンパイル使用メモリ | 215,140 KB |
| 最終ジャッジ日時 | 2025-01-26 00:05:29 |
|
ジャッジサーバーID (参考情報) |
judge6 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 26 |
ソースコード
#include<bits/stdc++.h>
using namespace std;
#define rep(i,n) for(ll i=0;i<n;i++)
#define repl(i,l,r) for(ll i=(l);i<(r);i++)
#define per(i,n) for(ll i=(n)-1;i>=0;i--)
#define perl(i,r,l) for(ll i=r-1;i>=l;i--)
#define fi first
#define se second
#define pb push_back
#define ins insert
#define pqueue(x) priority_queue<x,vector<x>,greater<x>>
#define all(x) (x).begin(),(x).end()
#define CST(x) cout<<fixed<<setprecision(x)
#define rev(x) reverse(x);
using ll=long long;
using vl=vector<ll>;
using vvl=vector<vector<ll>>;
using pl=pair<ll,ll>;
using vpl=vector<pl>;
using vvpl=vector<vpl>;
const ll MOD=1000000007;
const ll MOD9=998244353;
const int inf=1e9+10;
const ll INF=4e18;
const ll dy[8]={-1,0,1,0,1,1,-1,-1};
const ll dx[8]={0,-1,0,1,1,-1,1,-1};
template <typename T> inline bool chmax(T &a, T b) {
return ((a < b) ? (a = b, true) : (false));
}
template <typename T> inline bool chmin(T &a, T b) {
return ((a > b) ? (a = b, true) : (false));
}
const int mod = MOD9;
const int max_n = 300015;
struct mint {
ll x; // typedef long long ll;
mint(ll x=0):x((x%mod+mod)%mod){}
mint operator-() const { return mint(-x);}
mint& operator+=(const mint a) {
if ((x += a.x) >= mod) x -= mod;
return *this;
}
mint& operator-=(const mint a) {
if ((x += mod-a.x) >= mod) x -= mod;
return *this;
}
mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this;}
mint operator+(const mint a) const { return mint(*this) += a;}
mint operator-(const mint a) const { return mint(*this) -= a;}
mint operator*(const mint a) const { return mint(*this) *= a;}
mint pow(ll t) const {
if (!t) return 1;
mint a = pow(t>>1);
a *= a;
if (t&1) a *= *this;
return a;
}
bool operator==(const mint &p) const { return x == p.x; }
bool operator!=(const mint &p) const { return x != p.x; }
// for prime mod
mint inv() const { return pow(mod-2);}
mint& operator/=(const mint a) { return *this *= a.inv();}
mint operator/(const mint a) const { return mint(*this) /= a;}
};
istream& operator>>(istream& is, mint& a) { return is >> a.x;}
ostream& operator<<(ostream& os, const mint& a) { return os << a.x;}
using vm=vector<mint>;
using vvm=vector<vm>;
struct combination {
vector<mint> fact, ifact;
combination(int n):fact(n+1),ifact(n+1) {
assert(n < mod);
fact[0] = 1;
for (int i = 1; i <= n; ++i) fact[i] = fact[i-1]*i;
ifact[n] = fact[n].inv();
for (int i = n; i >= 1; --i) ifact[i-1] = ifact[i]*i;
}
mint operator()(int n, int k) {
if (k < 0 || k > n) return 0;
return fact[n]*ifact[k]*ifact[n-k];
}
}comb(max_n);
namespace NTT {
//MOD9のNTT auto c=NTT::mul(a,b)で受け取り。
std::vector<ll> tmp;
size_t sz = 1;
inline ll powMod(ll n, ll p, ll m) {
ll res = 1;
while (p) {
if (p & 1) res = res * n % m;
n = n * n % m;
p >>= 1;
}
return res;
}
inline ll invMod(ll n, ll m) {
return powMod(n, m - 2, m);
}
ll extGcd(ll a, ll b, ll &p, ll &q) {
if (b == 0) { p = 1; q = 0; return a; }
ll d = extGcd(b, a%b, q, p);
q -= a/b * p;
return d;
}
pair<ll, ll> ChineseRem(const vector<ll> &b, const vector<ll> &m) {
ll r = 0, M = 1;
for (int i = 0; i < (int)b.size(); ++i) {
ll p, q;
ll d = extGcd(M, m[i], p, q); // p is inv of M/d (mod. m[i]/d)
if ((b[i] - r) % d != 0) return make_pair(0, -1);
ll tmp = (b[i] - r) / d * p % (m[i]/d);
r += M * tmp;
M *= m[i]/d;
}
return make_pair((r+M+M)%M, M);
}
template <ll Mod, ll PrimitiveRoot>
struct NTTPart {
static std::vector<ll> ntt(std::vector<ll> a, bool inv = false) {
size_t mask = sz - 1;
size_t p = 0;
for (size_t i = sz >> 1; i >= 1; i >>= 1) {
auto& cur = (p & 1) ? tmp : a;
auto& nex = (p & 1) ? a : tmp;
ll e = powMod(PrimitiveRoot, (Mod - 1) / sz * i, Mod);
if (inv) e = invMod(e, Mod);
ll w = 1;
for (size_t j = 0; j < sz; j += i) {
for (size_t k = 0; k < i; ++k) {
nex[j + k] = (cur[((j << 1) & mask) + k] + w * cur[(((j << 1) + i) & mask) + k]) % Mod;
}
w = w * e % Mod;
}
++p;
}
if (p & 1) std::swap(a, tmp);
if (inv) {
ll invSz = invMod(sz, Mod);
for (size_t i = 0; i < sz; ++i) a[i] = a[i] * invSz % Mod;
}
return a;
}
static std::vector<ll> mul(std::vector<ll> a, std::vector<ll> b) {
a = ntt(a);
b = ntt(b);
for (size_t i = 0; i < sz; ++i) a[i] = a[i] * b[i] % Mod;
a = ntt(a, true);
return a;
}
};
std::vector<ll> mul(std::vector<ll> a, std::vector<ll> b) {
size_t m = a.size() + b.size() - 1;
sz = 1;
while (m > sz) sz <<= 1;
tmp.resize(sz);
a.resize(sz, 0);
b.resize(sz, 0);
vector<ll> c=NTTPart<998244353,3>::mul(a, b);
c.resize(m);
return c;
}
std::vector<ll> mul_ll(std::vector<ll> a, std::vector<ll> b) {
size_t m = a.size() + b.size() - 1;
sz = 1;
while (m > sz) sz <<= 1;
tmp.resize(sz);
a.resize(sz, 0);
b.resize(sz, 0);
vector<ll> c=NTTPart<998244353,3>::mul(a, b);
vector<ll> d=NTTPart<1224736769,3>::mul(a, b);
c.resize(m);d.resize(m);
vector<ll> e(m);
rep(i,m)e[i]=ChineseRem({c[i],d[i]},{998244353,1224736769}).first;
return e;
}
};
vm conv(vm a,vm b){
ll n=a.size(),m=b.size();
vector<ll> na(n),nb(m);
rep(i,n)na[i]=a[i].x;
rep(i,m)nb[i]=b[i].x;
auto nc=NTT::mul(na,nb);
vm c(n+m-1);
rep(i,n+m-1)c[i]=nc[i];
return c;
}
int main(){
string s;cin >> s;
vl alp(26);
rep(i,s.size())alp[s[i]-'a']++;
ll n=s.size();
vm dp;dp.emplace_back(1);
rep(i,26){
vm ndp;
rep(j,alp[i]+1)ndp.emplace_back(comb.ifact[j]);
dp=conv(dp,ndp);
}
rep(i,n+1)dp[i]*=comb.fact[i];
mint ans=0;
rep(i,n+1)ans+=dp[i];
cout << ans-1 << endl;
}