結果
| 問題 |
No.1771 A DELETEQ
|
| コンテスト | |
| ユーザー |
hitonanode
|
| 提出日時 | 2021-11-23 12:53:29 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 26 ms / 3,500 ms |
| コード長 | 2,573 bytes |
| コンパイル時間 | 2,158 ms |
| コンパイル使用メモリ | 116,436 KB |
| 最終ジャッジ日時 | 2025-01-26 00:40:32 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 38 |
ソースコード
#include <cassert>
#include <iostream>
#include <vector>
using namespace std;
#include <atcoder/modint>
#include <atcoder/convolution>
using mint = atcoder::modint998244353;
template <typename modint> struct acl_fac {
std::vector<modint> facs, facinvs;
acl_fac(int N) {
assert(-1 <= N and N < modint::mod());
facs.resize(N + 1, 1);
for (int i = 1; i <= N; i++) facs[i] = facs[i - 1] * i;
facinvs.assign(N + 1, facs.back().inv());
for (int i = N; i > 0; i--) facinvs[i - 1] = facinvs[i] * i;
}
modint ncr(int n, int r) const {
if (n < 0 or r < 0 or n < r) return 0;
return facs[n] * facinvs[r] * facinvs[n - r];
}
modint operator[](int i) const { return facs[i]; }
modint finv(int i) const { return facinvs[i]; }
};
acl_fac<mint> fac(1000000);
// https://hitonanode.github.io/cplib-cpp/formal_power_series/coeff_of_rational_function.hpp
// Calculate [x^N](num(x) / den(x))
// - Coplexity: O(LlgLlgN) ( L = size(num) + size(den) )
// - Reference: `Bostan–Mori algorithm` <https://qiita.com/ryuhe1/items/da5acbcce4ac1911f47a>
template <typename Tp> Tp coefficient_of_rational_function(long long N, std::vector<Tp> num, std::vector<Tp> den) {
assert(N >= 0);
while (den.size() and den.back() == 0) den.pop_back();
assert(den.size());
int h = 0;
while (den[h] == 0) h++;
N += h;
den.erase(den.begin(), den.begin() + h);
if (den.size() == 1) return N < int(num.size()) ? num[N] / den[0] : 0;
while (N) {
std::vector<Tp> g = den;
for (size_t i = 1; i < g.size(); i += 2) { g[i] = -g[i]; }
auto conv_num_g = atcoder::convolution(num, g);
num.resize((conv_num_g.size() + 1 - (N & 1)) / 2);
for (size_t i = 0; i < num.size(); i++) { num[i] = conv_num_g[i * 2 + (N & 1)]; }
auto conv_den_g = atcoder::convolution(den, g);
for (size_t i = 0; i < den.size(); i++) { den[i] = conv_den_g[i * 2]; }
N >>= 1;
}
return num[0] / den[0];
}
int main() {
// [x^M] ((1 + 2x)^(N + 1) - (x - x^2)^(N + 1)) / ((1 - x)^(N + 1) (1 + x + x^2))
int N, M;
cin >> N >> M;
vector<mint> num(N * 2 + 3), den(N + 4);
for (int d = 0; d <= N + 1; ++d) {
mint ncr = fac.ncr(N + 1, d);
mint sgn = d % 2 ? -1 : 1;
num[d] += mint(2).pow(d) * ncr;
num[d * 2 + (N + 1 - d)] -= sgn * ncr;
den[d] += ncr * sgn;
den[d + 1] += ncr * sgn;
den[d + 2] += ncr * sgn;
}
cout << coefficient_of_rational_function(M, num, den).val() << '\n';
}
hitonanode