結果

問題 No.1760 Setwise Coprime
ユーザー jelljell
提出日時 2021-11-24 15:39:39
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 18 ms / 2,000 ms
コード長 19,980 bytes
コンパイル時間 4,959 ms
コンパイル使用メモリ 268,872 KB
実行使用メモリ 7,936 KB
最終ジャッジ日時 2024-06-27 01:02:02
合計ジャッジ時間 6,624 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 3 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 3 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
testcase_15 AC 3 ms
5,376 KB
testcase_16 AC 2 ms
5,376 KB
testcase_17 AC 2 ms
5,376 KB
testcase_18 AC 2 ms
5,376 KB
testcase_19 AC 2 ms
5,376 KB
testcase_20 AC 2 ms
5,376 KB
testcase_21 AC 14 ms
6,944 KB
testcase_22 AC 13 ms
6,656 KB
testcase_23 AC 16 ms
7,552 KB
testcase_24 AC 8 ms
5,376 KB
testcase_25 AC 14 ms
6,940 KB
testcase_26 AC 11 ms
6,016 KB
testcase_27 AC 5 ms
5,376 KB
testcase_28 AC 4 ms
5,376 KB
testcase_29 AC 17 ms
7,552 KB
testcase_30 AC 17 ms
7,680 KB
testcase_31 AC 7 ms
5,376 KB
testcase_32 AC 15 ms
7,040 KB
testcase_33 AC 11 ms
6,016 KB
testcase_34 AC 16 ms
7,552 KB
testcase_35 AC 13 ms
6,912 KB
testcase_36 AC 18 ms
7,936 KB
testcase_37 AC 18 ms
7,808 KB
testcase_38 AC 18 ms
7,808 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "other-workspace\\tech2.cc"
#include <bits/extc++.h>

#line 2 "Library\\src\\algebra\\modint.hpp"

/**
 * @file modint.hpp
 * @brief Modular Arithmetic
 */

#line 11 "Library\\src\\algebra\\modint.hpp"

#line 2 "Library\\src\\number_theory\\sqrt_mod.hpp"

/**
 * @file sqrt_mod.hpp
 * @brief Tonelli-Shanks Algorithm
 */

#line 2 "Library\\src\\number_theory\\pow_mod.hpp"

/**
 * @file mod_pow.hpp
 * @brief Modular Exponentiation
 */

#line 9 "Library\\src\\number_theory\\pow_mod.hpp"

#line 2 "Library\\src\\utils\\sfinae.hpp"

/**
 * @file sfinae.hpp
 * @brief SFINAE
 */

#line 10 "Library\\src\\utils\\sfinae.hpp"
#include <type_traits>

#ifndef __INT128_DEFINED__

#ifdef __SIZEOF_INT128__
#define __INT128_DEFINED__ 1
#else
#define __INT128_DEFINED__ 0
#endif

#endif

namespace std {

#if __INT128_DEFINED__

template <> struct make_signed<__uint128_t> { using type = __int128_t; };
template <> struct make_signed<__int128_t> { using type = __int128_t; };

template <> struct make_unsigned<__uint128_t> { using type = __uint128_t; };
template <> struct make_unsigned<__int128_t> { using type = __uint128_t; };

template <> struct is_signed<__uint128_t> : std::false_type {};
template <> struct is_signed<__int128_t> : std::true_type {};

template <> struct is_unsigned<__uint128_t> : std::true_type {};
template <> struct is_unsigned<__int128_t> : std::false_type {};

#endif

}  // namespace std

namespace workspace {

template <class Tp, class... Args> struct variadic_front { using type = Tp; };

template <class... Args> struct variadic_back;

template <class Tp> struct variadic_back<Tp> { using type = Tp; };

template <class Tp, class... Args> struct variadic_back<Tp, Args...> {
  using type = typename variadic_back<Args...>::type;
};

template <class type, template <class> class trait>
using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;

/**
 * @brief Return type of subscripting ( @c [] ) access.
 */
template <class _Tp>
using subscripted_type =
    typename std::decay<decltype(std::declval<_Tp&>()[0])>::type;

template <class Container>
using element_type = typename std::decay<decltype(*std::begin(
    std::declval<Container&>()))>::type;

template <class _Tp, class = void> struct has_begin : std::false_type {};

template <class _Tp>
struct has_begin<
    _Tp, std::__void_t<decltype(std::begin(std::declval<const _Tp&>()))>>
    : std::true_type {
  using type = decltype(std::begin(std::declval<const _Tp&>()));
};

template <class _Tp, class = void> struct has_size : std::false_type {};

template <class _Tp>
struct has_size<_Tp, std::__void_t<decltype(std::size(std::declval<_Tp>()))>>
    : std::true_type {};

template <class _Tp, class = void> struct has_resize : std::false_type {};

template <class _Tp>
struct has_resize<_Tp, std::__void_t<decltype(std::declval<_Tp>().resize(
                           std::declval<size_t>()))>> : std::true_type {};

template <class _Tp, class = void> struct has_mod : std::false_type {};

template <class _Tp>
struct has_mod<_Tp, std::__void_t<decltype(_Tp::mod)>> : std::true_type {};

template <class _Tp, class = void> struct is_integral_ext : std::false_type {};
template <class _Tp>
struct is_integral_ext<
    _Tp, typename std::enable_if<std::is_integral<_Tp>::value>::type>
    : std::true_type {};

#if __INT128_DEFINED__

template <> struct is_integral_ext<__int128_t> : std::true_type {};
template <> struct is_integral_ext<__uint128_t> : std::true_type {};

#endif

#if __cplusplus >= 201402

template <class _Tp>
constexpr static bool is_integral_ext_v = is_integral_ext<_Tp>::value;

#endif

template <typename _Tp, typename = void> struct multiplicable_uint {
  using type = uint_least32_t;
};
template <typename _Tp>
struct multiplicable_uint<
    _Tp,
    typename std::enable_if<(2 < sizeof(_Tp)) &&
                            (!__INT128_DEFINED__ || sizeof(_Tp) <= 4)>::type> {
  using type = uint_least64_t;
};

#if __INT128_DEFINED__

template <typename _Tp>
struct multiplicable_uint<_Tp,
                          typename std::enable_if<(4 < sizeof(_Tp))>::type> {
  using type = __uint128_t;
};

#endif

template <typename _Tp> struct multiplicable_int {
  using type =
      typename std::make_signed<typename multiplicable_uint<_Tp>::type>::type;
};

template <typename _Tp> struct multiplicable {
  using type = std::conditional_t<
      is_integral_ext<_Tp>::value,
      std::conditional_t<std::is_signed<_Tp>::value,
                         typename multiplicable_int<_Tp>::type,
                         typename multiplicable_uint<_Tp>::type>,
      _Tp>;
};

template <class> struct first_arg { using type = void; };

template <class _R, class _Tp, class... _Args>
struct first_arg<_R(_Tp, _Args...)> {
  using type = _Tp;
};

template <class _R, class _Tp, class... _Args>
struct first_arg<_R (*)(_Tp, _Args...)> {
  using type = _Tp;
};

template <class _G, class _R, class _Tp, class... _Args>
struct first_arg<_R (_G::*)(_Tp, _Args...)> {
  using type = _Tp;
};

template <class _G, class _R, class _Tp, class... _Args>
struct first_arg<_R (_G::*)(_Tp, _Args...) const> {
  using type = _Tp;
};

template <class _Tp, class = void> struct parse_compare : first_arg<_Tp> {};

template <class _Tp>
struct parse_compare<_Tp, std::__void_t<decltype(&_Tp::operator())>>
    : first_arg<decltype(&_Tp::operator())> {};

template <class _Container, class = void> struct get_dimension {
  static constexpr size_t value = 0;
};

template <class _Container>
struct get_dimension<_Container,
                     std::enable_if_t<has_begin<_Container>::value>> {
  static constexpr size_t value =
      1 + get_dimension<typename std::iterator_traits<
              typename has_begin<_Container>::type>::value_type>::value;
};

}  // namespace workspace
#line 11 "Library\\src\\number_theory\\pow_mod.hpp"

namespace workspace {

/**
 * @brief Compile time modular exponentiation.
 *
 * @param __x
 * @param __n Exponent
 * @param __mod Modulus
 * @return
 */
template <class _Tp>
constexpr std::enable_if_t<(is_integral_ext<_Tp>::value), _Tp> pow_mod(
    _Tp __x, _Tp __n, _Tp __mod) noexcept {
  assert(__mod > 0);

  using mul_type = typename multiplicable_uint<_Tp>::type;

  if ((__x %= __mod) < 0) __x += __mod;

  mul_type __y{1};

  while (__n) {
    if (__n & 1) (__y *= __x) %= __mod;
    __x = (mul_type)__x * __x % __mod;
    __n >>= 1;
  }

  return __y;
};

}  // namespace workspace
#line 10 "Library\\src\\number_theory\\sqrt_mod.hpp"

namespace workspace {

/**
 * @brief Compile time modular square root.
 *
 * @param __x
 * @param __mod Modulus
 * @return One if it exists. Otherwise -1.
 */
template <class _Tp>
constexpr std::enable_if_t<(is_integral_ext<_Tp>::value), _Tp> sqrt_mod(
    _Tp __x, _Tp __mod) noexcept {
  assert(__mod > 0);

  using mul_type = typename multiplicable_uint<_Tp>::type;

  if ((__x %= __mod) < 0) __x += __mod;

  if (!__x) return 0;

  if (__mod == 2) return __x;

  if (pow_mod(__x, __mod >> 1, __mod) != 1) return -1;

  _Tp __z = __builtin_ctz(__mod - 1), __q = __mod >> __z;

  mul_type __a = pow_mod(__x, (__q + 1) >> 1, __mod), __b = 2;
  while (pow_mod<_Tp>(__b, __mod >> 1, __mod) == 1) ++__b;
  __b = pow_mod<_Tp>(__b, __q, __mod);

  _Tp __shift = 0;

  for (auto __r = __a * __a % __mod * pow_mod(__x, __mod - 2, __mod) % __mod;
       __r != 1; (__r *= (__b *= __b) %= __mod) %= __mod) {
    auto __bsf = __z;

    for (auto __e = __r; __e != 1; --__bsf) (__e *= __e) %= __mod;

    while (++__shift != __bsf) (__b *= __b) %= __mod;

    (__a *= __b) %= __mod;
  }

  return __a;
};

}  // namespace workspace
#line 14 "Library\\src\\algebra\\modint.hpp"

namespace workspace {

namespace _modint_impl {

template <auto _Mod, unsigned _Storage> struct modint {
  static_assert(is_integral_ext<decltype(_Mod)>::value,
                "_Mod must be integral type.");

  using mod_type = std::make_signed_t<typename std::conditional<
      0 < _Mod, std::add_const_t<decltype(_Mod)>, decltype(_Mod)>::type>;

  using value_type = std::decay_t<mod_type>;

  using reference = value_type &;
  using const_reference = value_type const &;

  using mul_type = typename multiplicable_uint<value_type>::type;

  static mod_type mod;  // Modulus.

  static unsigned storage;

 private:
  template <class _Tp>
  using modint_if = std::enable_if_t<is_integral_ext<_Tp>::value, modint>;

  value_type value = 0;  // within [0, mod).

  struct direct_ctor_t {};
  constexpr static direct_ctor_t direct_ctor_tag{};

  // Direct constructor
  template <class _Tp>
  constexpr modint(_Tp __n, direct_ctor_t) noexcept : value(__n) {}

 public:
  constexpr modint() noexcept = default;

  template <class _Tp, class = std::enable_if_t<
                           std::is_convertible<_Tp, value_type>::value>>
  constexpr modint(_Tp __n) noexcept
      : value((__n %= mod) < _Tp(0) ? static_cast<value_type>(__n) + mod
                                    : static_cast<value_type>(__n)) {}

  constexpr modint(bool __n) noexcept : value(__n) {}

  constexpr operator reference() noexcept { return value; }

  constexpr operator const_reference() const noexcept { return value; }

  // unary operators {{
  constexpr modint operator++(int) noexcept {
    modint __t{*this};
    operator++();
    return __t;
  }

  constexpr modint operator--(int) noexcept {
    modint __t{*this};
    operator--();
    return __t;
  }

  constexpr modint &operator++() noexcept {
    if (++value == mod) value = 0;
    return *this;
  }

  constexpr modint &operator--() noexcept {
    if (!value)
      value = mod - 1;
    else
      --value;
    return *this;
  }

  constexpr modint operator+() const noexcept { return *this; }

  constexpr modint operator-() const noexcept {
    return {value ? mod - value : 0, direct_ctor_tag};
  }

  // }} unary operators

  // operator+= {{

  constexpr modint &operator+=(const modint &__x) noexcept {
    if ((value += __x.value) >= mod) value -= mod;
    return *this;
  }

  template <class _Tp> constexpr modint_if<_Tp> &operator+=(_Tp __x) noexcept {
    __x %= mod, value += __x;
    if (value < 0)
      value += mod;
    else if (value >= mod)
      value -= mod;
    return *this;
  }

  // }} operator+=

  // operator+ {{

  template <class _Tp>
  constexpr modint_if<_Tp> operator+(_Tp const &__x) const noexcept {
    return modint{*this} += __x;
  }

  constexpr modint operator+(modint __x) const noexcept { return __x += *this; }

  template <class _Tp>
  constexpr friend modint_if<_Tp> operator+(_Tp const &__x,
                                            modint __y) noexcept {
    return __y += __x;
  }

  // }} operator+

  // operator-= {{

  constexpr modint &operator-=(const modint &__x) noexcept {
    if ((value -= __x.value) < 0) value += mod;
    return *this;
  }

  template <class _Tp> constexpr modint_if<_Tp> &operator-=(_Tp __x) noexcept {
    __x %= mod, value -= __x;
    if (value < 0)
      value += mod;
    else if (value >= mod)
      value -= mod;
    return *this;
  }

  // }} operator-=

  // operator- {{

  template <class _Tp>
  constexpr modint_if<_Tp> operator-(_Tp const &__x) const noexcept {
    return modint{*this} -= __x;
  }

  constexpr modint operator-(const modint &__x) const noexcept {
    return modint{*this} -= __x;
  }

  template <class _Tp>
  constexpr friend modint_if<_Tp> operator-(_Tp __x,
                                            const modint &__y) noexcept {
    if (((__x -= __y.value) %= mod) < 0) __x += mod;
    return {__x, direct_ctor_tag};
  }

  // }} operator-

  // operator*= {{

  constexpr modint &operator*=(const modint &__x) noexcept {
    value =
        static_cast<value_type>(value * static_cast<mul_type>(__x.value) % mod);
    return *this;
  }

  template <class _Tp> constexpr modint_if<_Tp> &operator*=(_Tp __x) noexcept {
    value = static_cast<value_type>(
        value * ((__x %= mod) < 0 ? mul_type(__x + mod) : mul_type(__x)) % mod);
    return *this;
  }

  // }} operator*=

  // operator* {{

  constexpr modint operator*(const modint &__x) const noexcept {
    return {static_cast<mul_type>(value) * __x.value % mod, direct_ctor_tag};
  }

  template <class _Tp>
  constexpr modint_if<_Tp> operator*(_Tp __x) const noexcept {
    __x %= mod;
    if (__x < 0) __x += mod;
    return {static_cast<mul_type>(value) * __x % mod, direct_ctor_tag};
  }

  template <class _Tp>
  constexpr friend modint_if<_Tp> operator*(_Tp __x,
                                            const modint &__y) noexcept {
    __x %= mod;
    if (__x < 0) __x += mod;
    return {static_cast<mul_type>(__x) * __y.value % mod, direct_ctor_tag};
  }

  // }} operator*

 protected:
  static value_type _mem(value_type __x) {
    static std::vector<value_type> __m{0, 1};
    static value_type __i = (__m.reserve(storage), 1);
    while (__i < __x) {
      ++__i;
      __m.emplace_back(mod - mul_type(mod / __i) * __m[mod % __i] % mod);
    }
    return __m[__x];
  }

  static value_type _div(mul_type __r, value_type __x) noexcept {
    assert(__x != value_type(0));
    if (!__r) return 0;

    std::make_signed_t<value_type> __v{};
    bool __neg = __x < 0 ? __x = -__x, true : false;

    if (static_cast<decltype(storage)>(__x) < storage)
      __v = _mem(__x);
    else {
      value_type __y{mod}, __u{1}, __t;

      while (__x)
        __t = __y / __x, __y ^= __x ^= (__y -= __t * __x) ^= __x,
        __v ^= __u ^= (__v -= __t * __u) ^= __u;

      if (__y < 0) __neg ^= 1;
    }

    if (__neg)
      __v = 0 < __v ? mod - __v : -__v;
    else if (__v < 0)
      __v += mod;

    return __r == mul_type(1) ? static_cast<value_type>(__v)
                              : static_cast<value_type>(__r * __v % mod);
  }

 public:
  static void reserve(unsigned __n) noexcept {
    if (storage < __n) storage = __n;
  }

  // operator/= {{

  constexpr modint &operator/=(const modint &__x) noexcept {
    if (value) value = _div(value, __x.value);
    return *this;
  }

  template <class _Tp> constexpr modint_if<_Tp> &operator/=(_Tp __x) noexcept {
    if (value) value = _div(value, __x %= mod);
    return *this;
  }

  // }} operator/=

  // operator/ {{

  constexpr modint operator/(const modint &__x) const noexcept {
    if (!value) return {};
    return {_div(value, __x.value), direct_ctor_tag};
  }

  template <class _Tp>
  constexpr modint_if<_Tp> operator/(_Tp __x) const noexcept {
    if (!value) return {};
    return {_div(value, __x %= mod), direct_ctor_tag};
  }

  template <class _Tp>
  constexpr friend modint_if<_Tp> operator/(_Tp __x,
                                            const modint &__y) noexcept {
    if (!__x) return {};
    if ((__x %= mod) < 0) __x += mod;
    return {_div(__x, __y.value), direct_ctor_tag};
  }

  // }} operator/

  constexpr modint inv() const noexcept { return _div(1, value); }

  template <class _Tp> constexpr modint pow(_Tp __e) const noexcept {
    static_assert(not std::is_floating_point<_Tp>::value);

    modint __r{mod != 1, direct_ctor_tag};

    for (modint __b{__e < _Tp(0) ? __e = -__e, _div(1, value) : value,
                                   direct_ctor_tag};
         __e; __e /= 2, __b *= __b)
      if (__e % 2) __r *= __b;

    return __r;
  }

  template <class _Tp>
  constexpr friend modint pow(modint __b, _Tp __e) noexcept {
    static_assert(not std::is_floating_point<_Tp>::value);

    if (__e < _Tp(0)) {
      __e = -__e;
      __b.value = _div(1, __b.value);
    }

    modint __r{mod != 1, direct_ctor_tag};

    for (; __e; __e /= 2, __b *= __b)
      if (__e % 2) __r *= __b;

    return __r;
  }

  constexpr modint sqrt() const noexcept {
    return {sqrt_mod(value, mod), direct_ctor_tag};
  }

  friend constexpr modint sqrt(const modint &__x) noexcept {
    return {sqrt_mod(__x.value, mod), direct_ctor_tag};
  }

  friend std::istream &operator>>(std::istream &__is, modint &__x) noexcept {
    std::string __s;
    __is >> __s;
    bool __neg = false;
    if (__s.front() == '-') {
      __neg = true;
      __s.erase(__s.begin());
    }
    __x = 0;
    for (char __c : __s) __x = __x * 10 + (__c - '0');
    if (__neg) __x = -__x;
    return __is;
  }
};

template <auto _Mod, unsigned _Storage>
typename modint<_Mod, _Storage>::mod_type modint<_Mod, _Storage>::mod =
    _Mod > 0 ? _Mod : 0;

template <auto _Mod, unsigned _Storage>
unsigned modint<_Mod, _Storage>::storage = _Storage;

}  // namespace _modint_impl

constexpr unsigned _modint_default_storage = 1 << 24;

template <auto _Mod, unsigned _Storage = _modint_default_storage,
          typename = std::enable_if_t<(_Mod > 0)>>
using modint = _modint_impl::modint<_Mod, _Storage>;

template <unsigned _Id = 0, unsigned _Storage = _modint_default_storage>
using runtime_modint = _modint_impl::modint<-(signed)_Id, _Storage>;

template <unsigned _Id = 0, unsigned _Storage = _modint_default_storage>
using runtime_modint64 = _modint_impl::modint<-(int_least64_t)_Id, _Storage>;

}  // namespace workspace
#line 4 "other-workspace\\tech2.cc"
namespace workspace {
using mint = modint<998244353>;
}

#line 2 "Library\\src\\utils\\round_div.hpp"

/*
 * @file round_div.hpp
 * @brief Round Integer Division
 */

#line 9 "Library\\src\\utils\\round_div.hpp"

#line 11 "Library\\src\\utils\\round_div.hpp"

namespace workspace {

/*
 * @fn floor_div
 * @brief floor of fraction.
 * @param x the numerator
 * @param y the denominator
 * @return maximum integer z s.t. z <= x / y
 * @note y must be nonzero.
 */
template <typename T1, typename T2>
constexpr typename std::enable_if<(is_integral_ext<T1>::value &&
                                   is_integral_ext<T2>::value),
                                  typename std::common_type<T1, T2>::type>::type
floor_div(T1 x, T2 y) {
  assert(y != 0);
  if (y < 0) x = -x, y = -y;
  return x < 0 ? (x - y + 1) / y : x / y;
}

/*
 * @fn ceil_div
 * @brief ceil of fraction.
 * @param x the numerator
 * @param y the denominator
 * @return minimum integer z s.t. z >= x / y
 * @note y must be nonzero.
 */
template <typename T1, typename T2>
constexpr typename std::enable_if<(is_integral_ext<T1>::value &&
                                   is_integral_ext<T2>::value),
                                  typename std::common_type<T1, T2>::type>::type
ceil_div(T1 x, T2 y) {
  assert(y != 0);
  if (y < 0) x = -x, y = -y;
  return x < 0 ? x / y : (x + y - 1) / y;
}

}  // namespace workspace
#line 9 "other-workspace\\tech2.cc"

namespace workspace {

template <class _Tp> auto quotients(_Tp __n) {
  assert(__n >= 0);
  std::vector<std::pair<_Tp, _Tp>> res;
  for (_Tp q = __n + 1; q;) {
    _Tp k = __n / q + 1;
    q = __n / k;
    res.emplace_back(k, q);
  }
  return res;
}

void main() {
  int n;
  std::cin >> n;

  std::vector<mint> mu(n + 1, 2);
  mu[0] = 0;
  mu[1] = 1;
  for (auto i = 2; i <= n; ++i) {
    if (mu[i] != 2) continue;
    for (auto j = i, k = 1; j <= n; j += i, ++k) {
      if (k % i)
        mu[j] = -mu[k];
      else
        mu[j] = 0;
    }
  }

  std::vector<mint> c(n + 1);
  mint msum, csum;

  std::vector<mint> pow2(n + 1);
  pow2[0] = 1;
  auto pow3i4 = pow2;
  const auto base = mint(3) / 4;

  for (auto i = 1; i < pow2.size(); ++i) {
    pow2[i] = pow2[i - 1] * 2;
    pow3i4[i] = pow3i4[i - 1] * base;
  }

  for (auto i = 1; i <= n; ++i) {
    msum += mu[i];
    c[i] = mu[i] * pow2[n / i];
    csum += c[i];
  }

  auto ans = (csum - msum) * (csum - msum);

  std::vector<mint> mobius(n + 1);
  for (auto i = 1; i <= n; ++i) {
    for (auto j = i; j <= n; j += i) {
      mobius[j] += c[i];
    }
    mobius[i] *= mobius[i];
  }

  std::vector<int> used(n + 1);
  used[1] = 1;

  for (auto i = 1; i <= n; ++i) {
    if (not used[i]) {
      for (auto k = n / i, j = k * i; j; j -= i, --k) {
        mobius[j] -= mobius[k];
        used[j] = 1;
      }
    }
    ans += mobius[i] * pow3i4[n / i];
    ans -= mobius[i];
  }

  std::cout << ans << "\n";
}

}  // namespace workspace

int main() { workspace::main(); }
0