結果
| 問題 |
No.1479 Matrix Eraser
|
| コンテスト | |
| ユーザー |
jell
|
| 提出日時 | 2021-11-25 21:19:42 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 439 ms / 3,000 ms |
| コード長 | 36,541 bytes |
| コンパイル時間 | 4,643 ms |
| コンパイル使用メモリ | 282,720 KB |
| 最終ジャッジ日時 | 2025-01-26 01:14:00 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 39 |
ソースコード
#line 1 "atcoder-workspace\\tmp.cc"
#include <bits/extc++.h>
#line 2 "Library\\src\\data_structure\\compression.hpp"
/**
* @file compression.hpp
* @brief Compression
*/
#line 11 "Library\\src\\data_structure\\compression.hpp"
namespace workspace {
template <class _Tp> class compression {
std::vector<_Tp> __vec;
decltype(auto) begin() { return __vec.begin(); }
decltype(auto) end() { return __vec.end(); }
public:
using size_type = typename std::vector<_Tp>::size_type;
/**
* @brief Construct a new compression object.
*/
compression() = default;
/**
* @brief Construct a new compression object.
*
* @param __first
* @param __last
*/
template <class _IIter>
compression(_IIter __first, _IIter __last) noexcept : __vec(__first, __last) {
make();
}
decltype(auto) begin() const noexcept { return __vec.begin(); }
decltype(auto) end() const noexcept { return __vec.end(); }
decltype(auto) operator[](size_type __i) const noexcept {
assert(__i < size());
return __vec[__i];
}
size_type size() const noexcept { return __vec.size(); }
template <class... _Args> decltype(auto) emplace(_Args&&... __args) noexcept {
return __vec.emplace_back(std::forward<_Args>(__args)...);
}
template <class... _Args> void insert(_Args&&... __args) noexcept {
__vec.insert(end(), std::forward<_Args>(__args)...);
}
/**
* @brief Sort and make unique.
* @return Number of different values.
*/
size_type make() noexcept {
std::sort(begin(), end());
__vec.erase(std::unique(begin(), end(),
[](const _Tp& __l, const _Tp& __r) {
return !(__l < __r) && !(__r < __l);
}),
end());
return size();
}
size_type lower_bound(const _Tp& __x) const noexcept {
return std::lower_bound(begin(), end(), __x) - begin();
}
size_type upper_bound(const _Tp& __x) const noexcept {
return std::upper_bound(begin(), end(), __x) - begin();
}
};
template <class _IIter>
compression(_IIter, _IIter)
-> compression<typename std::iterator_traits<_IIter>::value_type>;
} // namespace workspace
#line 2 "Library\\src\\graph\\directed\\flow\\Dinic.hpp"
/**
* @file Dinic.hpp
* @brief Dinic's Algorithm
*/
#line 9 "Library\\src\\graph\\directed\\flow\\Dinic.hpp"
#line 2 "Library\\src\\graph\\directed\\flow\\base.hpp"
/**
* @file base.hpp
* @brief Flow Graph
*/
#line 12 "Library\\src\\graph\\directed\\flow\\base.hpp"
namespace workspace {
template <class _Cap, class _Cost = void> class flow_graph {
protected:
class adjacency_impl;
public:
using container_type = std::vector<adjacency_impl>;
using size_type = typename container_type::size_type;
class unweighted_edge {
public:
size_type tail; // Source
size_type head; // Destination
_Cap capacity; // Capacity
_Cap flow; // Flow
unweighted_edge(size_type __s, size_type __d, const _Cap &__u = 1)
: tail(__s), head(__d), capacity(__u), flow(0) {
assert(!(capacity < static_cast<_Cap>(0))),
assert(!(flow < static_cast<_Cap>(0)));
}
// tail, head, capacity, flow
template <class _Os>
friend _Os &operator<<(_Os &__os, const unweighted_edge &__e) {
return __os << __e.tail << ' ' << __e.head << ' ' << __e.capacity << ' '
<< __e.flow;
}
protected:
unweighted_edge() = default;
unweighted_edge(size_type __s, size_type __d, const _Cap &__u,
const _Cap &__f)
: tail(__s), head(__d), capacity(__u), flow(__f) {}
unweighted_edge make_rev() const { return {head, tail, flow, capacity}; }
};
class weighted_edge : public unweighted_edge {
public:
_Cost cost; // _Cost
weighted_edge(const unweighted_edge &__e, const _Cost &__c = 0)
: unweighted_edge(__e), cost(__c) {}
weighted_edge(size_type __s, size_type __d, const _Cap &__u = 1,
const _Cost &__c = 0)
: unweighted_edge(__s, __d, __u), cost(__c) {}
// tail, head, capacity, flow, cost
template <class _Os>
friend _Os &operator<<(_Os &__os, const weighted_edge &__e) {
return __os << static_cast<unweighted_edge>(__e) << ' ' << __e.cost;
}
protected:
weighted_edge() = default;
weighted_edge make_rev() const {
return {unweighted_edge::make_rev(), -cost};
}
};
using edge = std::conditional_t<std::is_void<_Cost>::value, unweighted_edge,
weighted_edge>;
protected:
struct edge_impl : edge {
bool aux = false;
edge_impl *rev = nullptr;
edge_impl() = default;
edge_impl(const edge &__e) : edge(__e) {}
edge_impl(edge &&__e) : edge(__e) {}
void push(_Cap __f) {
edge::capacity -= __f;
edge::flow += __f;
if (rev) {
rev->capacity += __f;
rev->flow -= __f;
}
}
edge_impl make_rev() {
edge_impl __e = edge::make_rev();
__e.aux = true;
__e.rev = this;
return __e;
}
};
public:
class adjacency {
public:
using value_type = edge;
using reference = edge &;
using const_reference = edge const &;
using pointer = edge *;
using const_pointer = const edge *;
class iterator {
edge_impl *__p;
public:
iterator(edge_impl *__p = nullptr) : __p(__p) {}
bool operator!=(const iterator &__x) const { return __p != __x.__p; }
bool operator==(const iterator &__x) const { return __p == __x.__p; }
iterator &operator++() {
do ++__p;
while (__p->rev && __p->aux);
return *this;
}
iterator operator++(int) {
auto __cp = *this;
do ++__p;
while (__p->rev && __p->aux);
return __cp;
}
iterator &operator--() {
do --__p;
while (__p->aux);
return *this;
}
iterator operator--(int) {
auto __cp = *this;
do --__p;
while (__p->aux);
return __cp;
}
pointer operator->() const { return __p; }
reference operator*() const { return *__p; }
};
class const_iterator {
const edge_impl *__p;
public:
const_iterator(const edge_impl *__p = nullptr) : __p(__p) {}
bool operator!=(const const_iterator &__x) const {
return __p != __x.__p;
}
bool operator==(const const_iterator &__x) const {
return __p == __x.__p;
}
const_iterator &operator++() {
do ++__p;
while (__p->rev && __p->aux);
return *this;
}
const_iterator operator++(int) {
auto __cp = *this;
do ++__p;
while (__p->rev && __p->aux);
return __cp;
}
const_iterator &operator--() {
do --__p;
while (__p->aux);
return *this;
}
const_iterator operator--(int) {
auto __cp = *this;
do --__p;
while (__p->aux);
return __cp;
}
const_pointer operator->() const { return __p; }
const_reference operator*() const { return *__p; }
};
adjacency()
: first(new edge_impl[2]), last(first + 1), __s(first), __t(first) {}
~adjacency() { delete[] first; }
const_reference operator[](size_type __i) const {
assert(__i < size());
return *(first + __i);
}
size_type size() const { return __t - first; }
auto begin() { return iterator{__s}; }
auto begin() const { return const_iterator{__s}; }
auto end() { return iterator{__t}; }
auto end() const { return const_iterator{__t}; }
/**
* @brief Construct a new adjacency object
*
* @param __x Rvalue reference to another object
*/
adjacency(adjacency &&__x) : first(nullptr) { operator=(std::move(__x)); }
/**
* @brief Assignment operator.
*
* @param __x Rvalue reference to another object
* @return Reference to this object.
*/
adjacency &operator=(adjacency &&__x) {
delete[] first;
first = __x.first, __x.first = nullptr;
last = __x.last, __s = __x.__s, __t = __x.__t;
return *this;
}
protected:
edge_impl *first, *last, *__s, *__t;
};
using value_type = adjacency;
using reference = adjacency &;
using const_reference = adjacency const &;
protected:
class adjacency_impl : public adjacency {
public:
using base = adjacency;
using base::__s;
using base::__t;
using base::first;
using base::last;
using iterator = edge_impl *;
iterator push(const edge_impl &__e) {
realloc();
*__t = __e;
if (__s->aux) ++__s;
return __t++;
}
iterator push(edge_impl &&__e) {
realloc();
*__t = std::move(__e);
if (__s->aux) ++__s;
return __t++;
}
iterator begin() const { return first; }
iterator end() const { return __t; }
void realloc() {
if (__t == last) {
size_type __n(last - first);
iterator loc = new edge_impl[__n << 1 | 1];
__s += loc - first;
__t = loc;
for (iterator __p{first}; __p != last; ++__p, ++__t) {
*__t = *__p;
if (__p->rev) __p->rev->rev = __t;
}
delete[] first;
first = loc;
last = __t + __n;
}
}
};
// Only member variable.
container_type graph;
public:
/**
* @brief Construct a new flow graph object
*
* @param __n Number of vertices
*/
flow_graph(size_type __n = 0) : graph(__n) {}
/**
* @brief Construct a new flow graph object
*
* @param __x Const reference to another object
*/
flow_graph(const flow_graph &__x) : graph(__x.size()) {
for (auto &&__adj : __x)
for (auto &&__e : __adj) add_edge(__e);
}
/**
* @brief Construct a new flow graph object
*
* @param __x Rvalue reference to another object
*/
flow_graph(flow_graph &&__x) : graph(std::move(__x.graph)) {}
/**
* @brief Assignment operator.
*
* @param __x Const reference to another object
* @return Reference to this object.
*/
flow_graph &operator=(const flow_graph &__x) {
return operator=(std::move(flow_graph{__x}));
}
/**
* @brief Assignment operator.
*
* @param __x Rvalue reference to another object
* @return Reference to this object.
*/
flow_graph &operator=(flow_graph &&__x) {
graph = std::move(__x.graph);
return *this;
}
/**
* @return Whether the graph is empty.
*/
bool empty() const { return graph.empty(); }
/**
* @return Number of nodes.
*/
size_type size() const { return graph.size(); }
/**
* @param node Node
* @return Referece to the adjacency list of the node.
*/
reference operator[](size_type node) {
assert(node < size());
return graph[node];
}
/**
* @param node Node
* @return Const referece to the adjacency list of the node.
*/
const_reference operator[](size_type node) const {
assert(node < size());
return graph[node];
}
class iterator : public container_type::iterator {
using base = typename container_type::iterator;
public:
using reference = adjacency &;
using pointer = adjacency *;
iterator(const base &__i) : base(__i) {}
pointer operator->() const { return base::operator->(); }
reference operator*() const { return base::operator*(); }
};
class const_iterator : public container_type::const_iterator {
using base = typename container_type::const_iterator;
public:
using const_reference = const adjacency &;
using const_pointer = const adjacency *;
const_iterator(const base &__i) : base(__i) {}
const_pointer operator->() const { return base::operator->(); }
const_reference operator*() const { return base::operator*(); }
};
auto begin() { return iterator{graph.begin()}; }
auto begin() const { return const_iterator{graph.begin()}; }
auto end() { return iterator{graph.end()}; }
auto end() const { return const_iterator{graph.end()}; }
/**
* @brief Add a node to the graph.
*
* @return Index of the node.
*/
size_type add_node() { return add_nodes(1).front(); }
/**
* @brief Add some nodes to the graph.
*
* @param __n Number of nodes added
* @return List of indices of the nodes.
*/
std::vector<size_type> add_nodes(size_type __n) {
std::vector<size_type> __nodes(__n);
std::iota(__nodes.begin(), __nodes.end(), graph.size());
graph.resize(graph.size() + __n);
return __nodes;
}
/**
* @brief Add a directed edge to the graph.
*
* @return Reference to the edge.
*/
template <class... _Args>
typename std::enable_if<std::is_constructible<edge, _Args...>::value,
edge &>::type
add_edge(_Args &&...__args) {
edge_impl __e = edge(std::forward<_Args>(__args)...);
assert(__e.tail < size()), assert(__e.head < size());
edge_impl *__p = graph[__e.tail].push(std::move(__e));
// Careful with a self loop.
if (__p->tail != __p->head)
__p->rev = graph[__p->head].push(__p->make_rev());
return *__p;
}
/**
* @brief Add a directed edge to the graph.
*
* @return Reference to the edge.
*/
template <class _Tp>
typename std::enable_if<(std::tuple_size<std::decay_t<_Tp>>::value >= 0),
edge &>::type
add_edge(_Tp &&__t) {
return _unpack_directed(std::forward<_Tp>(__t));
}
/**
* @brief Add an undirected edge to the graph. Its cost must be non-negative.
*
* @return Reference to the edge.
*/
template <class... _Args> edge &add_undirected_edge(_Args &&...__args) {
edge_impl __e = edge(std::forward<_Args>(__args)...);
assert(__e.tail < size()), assert(__e.head < size());
__e.flow += __e.capacity;
edge_impl *__p = graph[__e.tail].push(std::move(__e));
// Careful with a self loop.
if (__p->tail != __p->head) {
edge_impl __r = __p->make_rev();
__r.aux = false;
__p->rev = graph[__p->head].push(std::move(__r));
}
return *__p;
}
/**
* @brief Add an undirected edge to the graph. Its cost must be non-negative.
*
* @return Reference to the edge.
*/
template <class _Tp>
typename std::enable_if<(std::tuple_size<std::decay_t<_Tp>>::value >= 0),
edge &>::type
add_undirected_edge(_Tp &&__t) {
return _unpack_undirected(std::forward<_Tp>(__t));
}
protected:
// internal
template <class _Tp, size_t _Nm = 0, class... _Args>
decltype(auto) _unpack_directed(_Tp &&__t, _Args &&...__args) {
if constexpr (_Nm == std::tuple_size<std::decay_t<_Tp>>::value)
return add_edge(std::forward<_Args>(__args)...);
else
return _unpack_directed<_Tp, _Nm + 1>(std::forward<_Tp>(__t),
std::forward<_Args>(__args)...,
std::get<_Nm>(__t));
}
// internal
template <class _Tp, size_t _Nm = 0, class... _Args>
decltype(auto) _unpack_undirected(_Tp &&__t, _Args &&...__args) {
if constexpr (_Nm == std::tuple_size<std::decay_t<_Tp>>::value)
return add_undirected_edge(std::forward<_Args>(__args)...);
else
return _unpack_undirected<_Tp, _Nm + 1>(std::forward<_Tp>(__t),
std::forward<_Args>(__args)...,
std::get<_Nm>(__t));
}
template <class _Os>
friend _Os &operator<<(_Os &__os, flow_graph const &__g) {
for (const auto &adj : __g)
for (const auto &e : adj) __os << e << "\n";
return __os;
}
};
} // namespace workspace
#line 11 "Library\\src\\graph\\directed\\flow\\Dinic.hpp"
namespace workspace {
/**
* @brief Compute the maximum flow.
* @tparam _Cap Capacity type
*/
template <class _Cap> class Dinic : public flow_graph<_Cap> {
using base = flow_graph<_Cap>;
public:
using size_type = typename base::size_type;
protected:
constexpr static size_type nil = -1;
std::vector<size_type> __level;
std::vector<typename base::container_type::value_type::iterator> __iter;
_Cap dfs(size_type __src, size_type __dst, _Cap __limit) noexcept {
if (__src == __dst) return __limit;
_Cap __flow(0);
for (auto &__e{__iter[__dst]}; __e != base::graph[__dst].end(); ++__e)
if (static_cast<_Cap>(0) < __e->flow &&
__level[__e->head] < __level[__dst])
if (_Cap achv = dfs(__src, __e->head, std::min(__limit, __e->flow));
static_cast<_Cap>(0) < achv) {
__e->push(-achv);
__flow += achv, __limit -= achv;
if (__limit == static_cast<_Cap>(0)) break;
}
return __flow;
}
public:
// Construct a new Dinic object.
Dinic() noexcept {}
/**
* @brief Construct a new Dinic object.
* @param __n Number of nodes
*/
Dinic(size_type __n) noexcept : base::flow_graph(__n) {}
/**
* @brief Run Dinic's algorithm.
* @param __src Source
* @param __dst Destination
* @return Maximum flow.
*/
_Cap run(size_type __src, size_type __dst) noexcept {
return run(__src, __dst, std::numeric_limits<_Cap>::max());
}
/**
* @brief Run Dinic's algorithm.
* @param __src Source
* @param __dst Destination
* @param __limit Flow limit
* @return Maximum flow.
*/
_Cap run(size_type __src, size_type __dst, _Cap __limit) noexcept {
assert(__src < base::size()), assert(__dst < base::size()),
assert(__src != __dst);
__level.resize(base::size(), nil);
__iter.resize(base::size());
if (!(static_cast<_Cap>(0) < __limit)) return 0;
_Cap __flow = 0;
for (std::vector<size_type> __q(base::size());;
std::fill(__level.begin(), __level.end(), nil)) {
__level[__q.front() = __src] = 0;
for (auto __ql{__q.begin()}, __qr{std::next(__ql)};
__level[__dst] == nil && __ql != __qr; ++__ql)
for (const auto &__e : base::graph[*__ql])
if (static_cast<_Cap>(0) < __e.capacity && __level[__e.head] == nil)
__level[ *__qr++ = __e.head] = __level[*__ql] + 1;
if (__level[__dst] == nil) break;
for (size_type __x{}; __x != base::size(); ++__x)
__iter[__x] = base::graph[__x].begin();
__flow += dfs(__src, __dst, __limit);
}
return __flow;
}
// Minimum Cut.
// Call it after `run`.
auto min_cut() const noexcept {
std::vector<typename base::edge> __cut;
for (size_type __x{}; __x != base::size(); ++__x)
if (~__level[__x])
for (const auto &__e : base::operator[](__x))
if (!~__level[__e.head]) __cut.emplace_back(__e);
return __cut;
}
};
} // namespace workspace
#line 2 "Library\\src\\utils\\py-like\\enumerate.hpp"
/**
* @file enumerate.hpp
* @brief Enumerate
*/
#line 2 "Library\\src\\utils\\py-like\\range.hpp"
/**
* @file range.hpp
* @brief Range
*/
#line 2 "Library\\src\\utils\\py-like\\reversed.hpp"
/**
* @file reversed.hpp
* @brief Reversed
*/
#line 9 "Library\\src\\utils\\py-like\\reversed.hpp"
#line 2 "Library\\lib\\cxx17"
#line 2 "Library\\lib\\cxx14"
#ifndef _CXX14_CONSTEXPR
#if __cplusplus >= 201402L
#define _CXX14_CONSTEXPR constexpr
#else
#define _CXX14_CONSTEXPR
#endif
#endif
#line 4 "Library\\lib\\cxx17"
#ifndef _CXX17_CONSTEXPR
#if __cplusplus >= 201703L
#define _CXX17_CONSTEXPR constexpr
#else
#define _CXX17_CONSTEXPR
#endif
#endif
#ifndef _CXX17_STATIC_ASSERT
#if __cplusplus >= 201703L
#define _CXX17_STATIC_ASSERT static_assert
#else
#define _CXX17_STATIC_ASSERT assert
#endif
#endif
#line 22 "Library\\lib\\cxx17"
#if __cplusplus < 201703L
namespace std {
/**
* @brief Return the size of a container.
* @param __cont Container.
*/
template <typename _Container>
constexpr auto size(const _Container& __cont) noexcept(noexcept(__cont.size()))
-> decltype(__cont.size()) {
return __cont.size();
}
/**
* @brief Return the size of an array.
*/
template <typename _Tp, size_t _Nm>
constexpr size_t size(const _Tp (&)[_Nm]) noexcept {
return _Nm;
}
/**
* @brief Return whether a container is empty.
* @param __cont Container.
*/
template <typename _Container>
[[nodiscard]] constexpr auto empty(const _Container& __cont) noexcept(
noexcept(__cont.empty())) -> decltype(__cont.empty()) {
return __cont.empty();
}
/**
* @brief Return whether an array is empty (always false).
*/
template <typename _Tp, size_t _Nm>
[[nodiscard]] constexpr bool empty(const _Tp (&)[_Nm]) noexcept {
return false;
}
/**
* @brief Return whether an initializer_list is empty.
* @param __il Initializer list.
*/
template <typename _Tp>
[[nodiscard]] constexpr bool empty(initializer_list<_Tp> __il) noexcept {
return __il.size() == 0;
}
struct monostate {};
} // namespace std
#else
#include <variant>
#endif
#line 11 "Library\\src\\utils\\py-like\\reversed.hpp"
namespace workspace {
// Reversed container.
template <class _Container> class reversed {
_Container __c;
public:
template <class _Tp>
constexpr reversed(_Tp &&__x) noexcept : __c(std::forward<_Container>(__x)) {}
template <class _Tp>
constexpr reversed(std::initializer_list<_Tp> __x) noexcept : __c(__x) {}
constexpr decltype(auto) begin() noexcept { return std::rbegin(__c); }
constexpr decltype(auto) begin() const noexcept { return std::rbegin(__c); }
constexpr decltype(auto) end() noexcept { return std::rend(__c); }
constexpr decltype(auto) end() const noexcept { return std::rend(__c); }
constexpr bool empty() const noexcept { return std::empty(__c); }
constexpr decltype(auto) size() const noexcept { return std::size(__c); }
using iterator = decltype(std::rbegin(__c));
using const_iterator = decltype(std::crbegin(__c));
using size_type = decltype(std::size(__c));
using difference_type =
typename std::iterator_traits<iterator>::difference_type;
using value_type = typename std::iterator_traits<iterator>::value_type;
using reference = typename std::iterator_traits<iterator>::reference;
using const_reference =
typename std::iterator_traits<const_iterator>::reference;
};
#if __cpp_deduction_guides >= 201606L
template <class _Tp> reversed(_Tp &&) -> reversed<_Tp>;
template <class _Tp>
reversed(std::initializer_list<_Tp>) -> reversed<std::initializer_list<_Tp>>;
#endif
} // namespace workspace
#line 9 "Library\\src\\utils\\py-like\\range.hpp"
namespace workspace {
template <class _Index> class range {
_Index __first, __last;
public:
class iterator {
_Index __i;
public:
using difference_type = std::ptrdiff_t;
using value_type = _Index;
using pointer = void;
using reference = value_type;
using iterator_category = std::random_access_iterator_tag;
constexpr iterator() = default;
constexpr iterator(const _Index &__x) noexcept : __i(__x) {}
constexpr bool operator==(const iterator &__x) const noexcept {
return __i == __x.__i;
}
constexpr bool operator!=(const iterator &__x) const noexcept {
return __i != __x.__i;
}
constexpr bool operator<(const iterator &__x) const noexcept {
return __i < __x.__i;
}
constexpr bool operator<=(const iterator &__x) const noexcept {
return __i <= __x.__i;
}
constexpr bool operator>(const iterator &__x) const noexcept {
return __i > __x.__i;
}
constexpr bool operator>=(const iterator &__x) const noexcept {
return __i >= __x.__i;
}
constexpr iterator &operator++() noexcept {
++__i;
return *this;
}
constexpr iterator operator++(int) noexcept {
auto __tmp = *this;
++__i;
return __tmp;
}
constexpr iterator &operator--() noexcept {
--__i;
return *this;
}
constexpr iterator operator--(int) noexcept {
auto __tmp = *this;
--__i;
return __tmp;
}
constexpr difference_type operator-(const iterator &__x) const noexcept {
return __i - __x.__i;
}
constexpr iterator &operator+=(difference_type __x) noexcept {
__i += __x;
return *this;
}
constexpr iterator operator+(difference_type __x) const noexcept {
return iterator(*this) += __x;
}
constexpr iterator &operator-=(difference_type __x) noexcept {
__i -= __x;
return *this;
}
constexpr iterator operator-(difference_type __x) const noexcept {
return iterator(*this) -= __x;
}
constexpr reference operator*() const noexcept { return __i; }
};
using value_type = _Index;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using size_type = std::size_t;
using const_iterator = iterator;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = reverse_iterator;
template <class _Tp1, class _Tp2>
constexpr range(const _Tp1 &__first, const _Tp2 &__last) noexcept
: __first(__first), __last(__last) {}
template <class _Tp>
constexpr range(const _Tp &__last) noexcept : __first(), __last(__last) {}
constexpr iterator begin() const noexcept { return {__first}; }
constexpr const_iterator cbegin() const noexcept { return begin(); }
constexpr iterator end() const noexcept { return {__last}; }
constexpr const_iterator cend() const noexcept { return end(); }
constexpr reverse_iterator rbegin() const noexcept {
return reverse_iterator{end()};
}
constexpr const_reverse_iterator crbegin() const noexcept { return rbegin(); }
constexpr reverse_iterator rend() const noexcept {
return reverse_iterator{begin()};
}
constexpr const_reverse_iterator crend() const noexcept { return rend(); }
constexpr size_type size() const noexcept { return __last - __first; }
};
#if __cpp_deduction_guides >= 201606L
template <class _Tp1, class _Tp2>
range(const _Tp1 &, const _Tp2 &)
-> range<std::decay_t<decltype(++std::declval<_Tp1 &>())>>;
template <class _Tp>
range(const _Tp &) -> range<std::decay_t<decltype(++std::declval<_Tp &>())>>;
template <class... _Args>
constexpr decltype(auto) rrange(_Args &&...__args) noexcept {
return reversed(range(std::forward<_Args>(__args)...));
}
#endif
} // namespace workspace
#line 2 "Library\\src\\utils\\py-like\\zip.hpp"
/**
* @file zip.hpp
* @brief Zip
*/
#line 11 "Library\\src\\utils\\py-like\\zip.hpp"
#line 2 "Library\\src\\utils\\iterator\\category.hpp"
/*
* @file category.hpp
* @brief Iterator Category
*/
#line 10 "Library\\src\\utils\\iterator\\category.hpp"
namespace workspace {
/*
* @tparam Tuple Tuple of iterator types
*/
template <class Tuple, size_t N = std::tuple_size<Tuple>::value - 1>
struct common_iterator_category {
using type = typename std::common_type<
typename common_iterator_category<Tuple, N - 1>::type,
typename std::iterator_traits<typename std::tuple_element<
N, Tuple>::type>::iterator_category>::type;
};
template <class Tuple> struct common_iterator_category<Tuple, 0> {
using type = typename std::iterator_traits<
typename std::tuple_element<0, Tuple>::type>::iterator_category;
};
} // namespace workspace
#line 2 "Library\\src\\utils\\iterator\\reverse.hpp"
/*
* @file reverse_iterator.hpp
* @brief Reverse Iterator
*/
#if __cplusplus >= 201703L
#include <iterator>
#include <optional>
namespace workspace {
/*
* @class reverse_iterator
* @brief Wrapper class for `std::reverse_iterator`.
* @see http://gcc.gnu.org/PR51823
*/
template <class Iterator>
class reverse_iterator : public std::reverse_iterator<Iterator> {
using base_std = std::reverse_iterator<Iterator>;
std::optional<typename base_std::value_type> deref;
public:
using base_std::reverse_iterator;
constexpr typename base_std::reference operator*() noexcept {
if (!deref) {
Iterator tmp = base_std::current;
deref = *--tmp;
}
return deref.value();
}
constexpr reverse_iterator &operator++() noexcept {
base_std::operator++();
deref.reset();
return *this;
}
constexpr reverse_iterator &operator--() noexcept {
base_std::operator++();
deref.reset();
return *this;
}
constexpr reverse_iterator operator++(int) noexcept {
base_std::operator++();
deref.reset();
return *this;
}
constexpr reverse_iterator operator--(int) noexcept {
base_std::operator++();
deref.reset();
return *this;
}
};
} // namespace workspace
#endif
#line 15 "Library\\src\\utils\\py-like\\zip.hpp"
namespace workspace {
template <class _Tuple> class zipped : protected _Tuple {
public:
zipped(const _Tuple &__x) : _Tuple(__x) {}
template <std::size_t _Nm> constexpr decltype(auto) get() const &noexcept {
return *std::get<_Nm>(*this);
}
template <std::size_t _Nm> constexpr decltype(auto) get() &&noexcept {
auto __tmp = *std::get<_Nm>(*this);
return __tmp;
}
};
template <class... _Containers> class zip {
std::tuple<_Containers...> __c;
template <std::size_t _Nm = 0>
constexpr decltype(auto) begin_cat() const noexcept {
if _CXX17_CONSTEXPR (_Nm != sizeof...(_Containers)) {
return std::tuple_cat(std::tuple(std::begin(std::get<_Nm>(__c))),
begin_cat<_Nm + 1>());
} else
return std::tuple<>();
}
template <std::size_t _Nm = 0>
constexpr decltype(auto) end_cat() const noexcept {
if _CXX17_CONSTEXPR (_Nm != sizeof...(_Containers)) {
return std::tuple_cat(std::tuple(std::end(std::get<_Nm>(__c))),
end_cat<_Nm + 1>());
} else
return std::tuple<>();
}
using _Iterator_tuple =
std::tuple<decltype(std::begin(std::declval<_Containers>()))...>;
public:
using size_type = std::size_t;
class iterator : public zipped<_Iterator_tuple> {
using _Base = zipped<_Iterator_tuple>;
public:
using difference_type = std::ptrdiff_t;
using value_type = _Base;
using pointer = void;
using reference = value_type &;
using iterator_category =
typename common_iterator_category<_Iterator_tuple>::type;
protected:
template <std::size_t _Nm = 0>
constexpr bool equal(const iterator &__x) const noexcept {
if _CXX17_CONSTEXPR (_Nm != sizeof...(_Containers)) {
return std::get<_Nm>(*this) == std::get<_Nm>(__x) ||
equal<_Nm + 1>(__x);
} else
return false;
}
template <std::size_t _Nm = 0> constexpr void increment() noexcept {
if _CXX17_CONSTEXPR (_Nm != sizeof...(_Containers))
++std::get<_Nm>(*this), increment<_Nm + 1>();
}
template <std::size_t _Nm = 0> constexpr void decrement() noexcept {
if _CXX17_CONSTEXPR (_Nm != sizeof...(_Containers))
--std::get<_Nm>(*this), decrement<_Nm + 1>();
}
template <std::size_t _Nm = 0>
constexpr void advance(difference_type __d) noexcept {
if _CXX17_CONSTEXPR (_Nm != sizeof...(_Containers))
std::get<_Nm>(*this) += __d, advance<_Nm + 1>(__d);
}
public:
iterator(const _Iterator_tuple &__x) : _Base(__x) {}
constexpr bool operator==(const iterator &__x) const noexcept {
return equal(__x);
}
constexpr bool operator!=(const iterator &__x) const noexcept {
return !equal(__x);
}
constexpr iterator &operator++() noexcept {
increment();
return *this;
}
constexpr iterator operator++(int) noexcept {
auto __tmp = *this;
increment();
return __tmp;
}
constexpr iterator &operator--() noexcept {
decrement();
return *this;
}
constexpr iterator operator--(int) noexcept {
auto __tmp = *this;
decrement();
return __tmp;
}
constexpr bool operator<(const iterator &__x) const noexcept {
return std::get<0>(*this) < std::get<0>(__x);
}
constexpr bool operator<=(const iterator &__x) const noexcept {
return std::get<0>(*this) <= std::get<0>(__x);
}
constexpr bool operator>(const iterator &__x) const noexcept {
return !operator<=(__x);
}
constexpr bool operator>=(const iterator &__x) const noexcept {
return !operator>(__x);
}
constexpr iterator &operator+=(difference_type __d) noexcept {
advance(__d);
return *this;
}
constexpr iterator &operator-=(difference_type __d) noexcept {
advance(-__d);
return *this;
}
constexpr iterator operator+(difference_type __d) const noexcept {
return iterator{*this} += __d;
}
constexpr iterator operator-(difference_type __d) const noexcept {
return iterator{*this} -= __d;
}
constexpr difference_type operator-(const iterator &__x) const noexcept {
return std::get<0>(*this) - std::get<0>(__x);
}
constexpr reference operator*() noexcept { return {*this}; }
};
using const_iterator = iterator;
template <class... _Args>
constexpr zip(_Args &&...__args) noexcept
: __c(std::forward<_Args>(__args)...) {}
template <class... _Args>
constexpr zip(std::initializer_list<_Args>... __args) noexcept
: __c(std::forward<_Args>(__args)...) {}
constexpr iterator begin() const noexcept { return {begin_cat()}; }
constexpr iterator end() const noexcept { return {end_cat()}; }
constexpr reverse_iterator<iterator> rbegin() const noexcept {
return reverse_iterator<iterator>{end()};
}
constexpr reverse_iterator<iterator> rend() const noexcept {
return reverse_iterator<iterator>{begin()};
}
#if __cplusplus >= 201703L
constexpr size_type size() const noexcept {
size_type __n = -1;
std::apply(
[&__n](auto &&__x) {
if (__n < __x.size()) __n = __x.size();
},
__c);
return __n;
}
#endif
};
#if __cpp_deduction_guides >= 201606L
template <class... _Args> zip(_Args &&...) -> zip<_Args...>;
// For gcc version < 10
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80438
template <class _Tp, class... _Args>
zip(_Tp &&, _Args &&...) -> zip<_Tp, _Args...>;
template <class... _Args>
zip(std::initializer_list<_Args>...) -> zip<std::initializer_list<_Args>...>;
#endif
} // namespace workspace
namespace std {
template <size_t _Nm, class _Tuple>
struct tuple_element<_Nm, workspace::zipped<_Tuple>> {
using type = remove_reference_t<
typename iterator_traits<tuple_element_t<_Nm, _Tuple>>::reference>;
};
template <class _Tuple>
struct tuple_size<workspace::zipped<_Tuple>> : tuple_size<_Tuple> {};
} // namespace std
#line 10 "Library\\src\\utils\\py-like\\enumerate.hpp"
#if __cplusplus >= 201703L
namespace workspace {
namespace _enumerate_impl {
constexpr size_t min_size() noexcept { return SIZE_MAX; }
template <class _Container, class... _Args>
constexpr size_t min_size(_Container const &__cont,
_Args &&... __args) noexcept {
return std::min(std::size(__cont), min_size(std::forward<_Args>(__args)...));
}
} // namespace _enumerate_impl
template <class... _Args>
constexpr decltype(auto) enumerate(_Args &&... __args) noexcept {
return zip(range(_enumerate_impl::min_size(__args...)),
std::forward<_Args>(__args)...);
}
template <class... _Args>
constexpr decltype(auto) enumerate(
std::initializer_list<_Args> const &... __args) noexcept {
return zip(range(_enumerate_impl::min_size(__args...)),
std::vector(__args)...);
}
} // namespace workspace
#endif
#line 6 "atcoder-workspace\\tmp.cc"
namespace workspace {
void main() {
// start here!
using namespace std;
int h, w;
std::cin >> h >> w;
std::vector<compression<int>> rows(501010), cols(rows);
std::vector<std::vector<std::pair<int, int>>> cells(501010);
for (auto i : range(h)) {
for (auto j : range(w)) {
int a;
std::cin >> a;
if (a) {
cells[a].emplace_back(i, j);
rows[a].insert(i);
cols[a].insert(j);
}
}
}
int ans{};
for (auto &&[rs, cs, ps] : zip(rows, cols, cells)) {
rs.make();
cs.make();
Dinic<int> g;
auto src = g.add_node();
auto dst = g.add_node();
auto rv = g.add_nodes(rs.size());
auto cv = g.add_nodes(cs.size());
for (auto &&v : rv) {
g.add_edge(src, v, 1);
}
for (auto &&v : cv) {
g.add_edge(v, dst, 1);
}
for (auto [x, y] : ps) {
g.add_edge(rv[rs.lower_bound(x)], cv[cs.lower_bound(y)], 1);
}
ans += g.run(src, dst);
}
std::cout << ans << "\n";
}
} // namespace workspace
int main() {
std::ios::sync_with_stdio(0);
std::cin.tie(0);
workspace::main();
}
jell