結果

問題 No.1775 Love Triangle 2
ユーザー 👑 ygussany
提出日時 2021-11-28 14:48:55
言語 C
(gcc 13.3.0)
結果
AC  
実行時間 341 ms / 8,000 ms
コード長 5,891 bytes
コンパイル時間 1,020 ms
コンパイル使用メモリ 35,012 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-07-03 21:19:56
合計ジャッジ時間 4,894 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 90
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <stdio.h>
#define K_MAX 3
#define BIT_K_MAX 4 // 2^(K-1)
#define N_MAX 100
#define M_MAX 5000
const int bit[6] = {1, 2, 4, 8, 16, 32};
void chmin(int* a, int b)
{
if (*a > b) *a = b;
}
typedef struct Edge {
struct Edge *next;
int v, id;
unsigned int label;
} edge;
int complement_graph(int N, int M, int A[], int B[], edge* adj[], edge e[])
{
static char adj_mat[N_MAX + 1][N_MAX + 1];
static int i, u, w;
for (u = 1; u <= N; u++) for (w = u + 1; w <= N; w++) adj_mat[u][w] = 0;
for (i = 1; i <= M; i++) {
u = A[i];
w = B[i];
adj_mat[u][w] = 1;
}
for (u = 1; u <= N; u++) adj[u] = NULL;
for (u = 1, i = 0; u <= N; u++) {
for (w = u + 1; w <= N; w++) {
if (adj_mat[u][w] != 0) continue;
e[i].v = w;
e[i].id = i;
e[i].next = adj[u];
adj[u] = &(e[i++]);
e[i].v = u;
e[i].id = i;
e[i].next = adj[w];
adj[w] = &(e[i++]);
}
}
return i / 2;
}
#define MT_N 624
#define MT_M 397
#define MT_MATRIX_A 0x9908b0dfUL
#define MT_UPPER_MASK 0x80000000UL
#define MT_LOWER_MASK 0x7fffffffUL
static unsigned int mt[MT_N];
static int mti = MT_N + 1;
void init_genrand(unsigned int s)
{
mt[0] = s & 0xffffffffUL;
for (mti = 1; mti < MT_N; mti++) {
mt[mti] = (1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti);
mt[mti] &= 0xffffffffUL;
}
}
unsigned int genrand()
{
unsigned int y;
static unsigned int mag01[2] = {0x0UL, MT_MATRIX_A};
if (mti >= MT_N) {
int kk;
if (mti == MT_N + 1) init_genrand(5489UL);
for (kk = 0; kk < MT_N - MT_M; kk++) {
y = (mt[kk] & MT_UPPER_MASK) | (mt[kk+1] & MT_LOWER_MASK);
mt[kk] = mt[kk+MT_M] ^ (y >> 1) ^ mag01[y&0x1UL];
}
for (; kk < MT_N - 1; kk++) {
y = (mt[kk] & MT_UPPER_MASK) | (mt[kk+1] & MT_LOWER_MASK);
mt[kk] = mt[kk+(MT_M-MT_N)] ^ (y >> 1) ^ mag01[y&0x1UL];
}
y = (mt[MT_N-1] & MT_UPPER_MASK) | (mt[0] & MT_LOWER_MASK);
mt[MT_N-1] = mt[MT_M-1] ^ (y >> 1) ^ mag01[y&0x1UL];
mti = 0;
}
y = mt[mti++];
y ^= (y >> 11);
y ^= (y << 7) & 0x9d2c5680UL;
y ^= (y << 15) & 0xefc60000UL;
y ^= (y >> 18);
return y;
}
#define POWX 4 // 3 -> 2^8, 4 -> 2^16, 5 -> 2^32
const unsigned int powd[5] = {2, 4, 16, 256, 65536}, powe[5] = {1, 2, 4, 8, 16};
// Multiplication on a finite field of size 2^32 with XOR addition
unsigned int nim_product(unsigned int A, unsigned int B)
{
if (A > B) return nim_product(B, A);
else if (A <= 1) return A * B;
static unsigned int memo[256][256] = {};
if (B < 256 && memo[A][B] != 0) return memo[A][B];
int i;
for (i = 0; i < POWX; i++) {
if (B == powd[i]) {
if (A == powd[i]) return (B >> 1) * 3;
else return A * B;
}
}
unsigned int a[2], b[2], ans[2][2];
for (i = POWX - 1; i >= 0; i--) if (B > powd[i]) break;
a[1] = A & (powd[i] - 1);
a[0] = (A ^ a[1]) >> powe[i];
b[1] = B & (powd[i] - 1);
b[0] = (B ^ b[1]) >> powe[i];
ans[0][0] = nim_product(a[0], b[0]);
ans[0][1] = nim_product(a[0], b[1]);
ans[1][0] = nim_product(a[1], b[0]);
ans[1][1] = nim_product(a[1], b[1]);
if (B < 256) {
memo[A][B] = (ans[0][0] ^ ans[0][1] ^ ans[1][0]) * powd[i] ^ nim_product(ans[0][0], powd[i] >> 1) ^ ans[1][1];
return memo[A][B];
} else return (ans[0][0] ^ ans[0][1] ^ ans[1][0]) * powd[i] ^ nim_product(ans[0][0], powd[i] >> 1) ^ ans[1][1];
}
// Computing the length of a shortest cycle through K specified vertices in O(2^K LM) time
int shortest_cycle_through_specified_vertices(int N, edge* adj[], edge e[], int K, int T[])
{
static char flag[N_MAX + 1];
static int i, u, w, s;
static edge *p;
for (u = 1; u <= N; u++) flag[u] = -1; // nonterminals
for (i = 0, s = T[K-1]; i < K; i++) flag[T[i]] = i; // terminals
for (u = 1; u <= N; u++) {
for (p = adj[u]; p != NULL; p = p->next) {
w = p->v;
if (w < u) continue;
p->label = genrand() % (powd[POWX] - 1) + 1;
if (u != s && w != s) e[p->id ^ 1].label = p->label;
else e[p->id ^ 1].label = genrand() % (powd[POWX] - 1) + 1; // around s
}
}
static int k, l, cur, prev;
static unsigned int dp[2][BIT_K_MAX][M_MAX * 2], tmp;
for (k = 0; k < bit[K-1]; k++) {
for (u = 1; u <= N; u++) {
for (p = adj[u]; p != NULL; p = p->next) {
dp[0][k][p->id] = 0;
dp[1][k][p->id] = 0;
}
}
}
for (p = adj[s]; p != NULL; p = p->next) dp[0][0][p->id] = p->label;
for (l = 1, cur = 1, prev = 0; l <= N; l++, cur ^= 1, prev ^= 1) {
for (p = adj[s], tmp = 0; p != NULL; p = p->next) tmp ^= dp[prev][bit[K-1] - 1][p->id ^ 1];
if (tmp != 0) return l;
else if (l == N) return N + 1;
for (k = 0; k < bit[K-1]; k++) {
for (u = 1; u <= N; u++) {
i = flag[u];
if (u == s || (i >= 0 && (k & bit[i]) != 0)) continue;
for (p = adj[u], tmp = 0; p != NULL; p = p->next) tmp ^= dp[prev][k][p->id ^ 1];
for (p = adj[u]; p != NULL; p = p->next) {
if (i < 0) dp[cur][k][p->id] = nim_product(tmp, p->label);
else dp[cur][k | bit[i]][p->id] = nim_product(tmp ^ dp[prev][k][p->id ^ 1], p->label);
dp[prev][k][p->id ^ 1] = 0;
}
}
}
}
}
int solve(int N, int M, int X, int Y, int Z, int A[], int B[])
{
static int K = 3, T[K_MAX], ans[2];
static edge *adj[N_MAX + 1] = {}, e[M_MAX * 2];
complement_graph(N, M, A, B, adj, e);
T[0] = X;
T[1] = Y;
T[2] = Z;
ans[0] = shortest_cycle_through_specified_vertices(N, adj, e, K, T);
ans[1] = shortest_cycle_through_specified_vertices(N, adj, e, K, T);
chmin(&(ans[0]), ans[1]);
// ans[1] = shortest_cycle_through_specified_vertices(N, adj, e, K, T);
// chmin(&(ans[0]), ans[1]);
return (ans[0] <= N)? ans[0]: -1;
}
int main()
{
static int i, N, M, X, Y, Z, A[M_MAX + 1], B[M_MAX + 1];
scanf("%d %d", &N, &M);
scanf("%d %d %d", &X, &Y, &Z);
for (i = 1; i <= M; i++) scanf("%d %d", &(A[i]), &(B[i]));
printf("%d\n", solve(N, M, X, Y, Z, A, B));
fflush(stdout);
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0