結果
問題 | No.1775 Love Triangle 2 |
ユーザー |
👑 |
提出日時 | 2021-11-28 14:48:55 |
言語 | C (gcc 13.3.0) |
結果 |
AC
|
実行時間 | 341 ms / 8,000 ms |
コード長 | 5,891 bytes |
コンパイル時間 | 1,020 ms |
コンパイル使用メモリ | 35,012 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-03 21:19:56 |
合計ジャッジ時間 | 4,894 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 90 |
ソースコード
#include <stdio.h>#define K_MAX 3#define BIT_K_MAX 4 // 2^(K-1)#define N_MAX 100#define M_MAX 5000const int bit[6] = {1, 2, 4, 8, 16, 32};void chmin(int* a, int b){if (*a > b) *a = b;}typedef struct Edge {struct Edge *next;int v, id;unsigned int label;} edge;int complement_graph(int N, int M, int A[], int B[], edge* adj[], edge e[]){static char adj_mat[N_MAX + 1][N_MAX + 1];static int i, u, w;for (u = 1; u <= N; u++) for (w = u + 1; w <= N; w++) adj_mat[u][w] = 0;for (i = 1; i <= M; i++) {u = A[i];w = B[i];adj_mat[u][w] = 1;}for (u = 1; u <= N; u++) adj[u] = NULL;for (u = 1, i = 0; u <= N; u++) {for (w = u + 1; w <= N; w++) {if (adj_mat[u][w] != 0) continue;e[i].v = w;e[i].id = i;e[i].next = adj[u];adj[u] = &(e[i++]);e[i].v = u;e[i].id = i;e[i].next = adj[w];adj[w] = &(e[i++]);}}return i / 2;}#define MT_N 624#define MT_M 397#define MT_MATRIX_A 0x9908b0dfUL#define MT_UPPER_MASK 0x80000000UL#define MT_LOWER_MASK 0x7fffffffULstatic unsigned int mt[MT_N];static int mti = MT_N + 1;void init_genrand(unsigned int s){mt[0] = s & 0xffffffffUL;for (mti = 1; mti < MT_N; mti++) {mt[mti] = (1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti);mt[mti] &= 0xffffffffUL;}}unsigned int genrand(){unsigned int y;static unsigned int mag01[2] = {0x0UL, MT_MATRIX_A};if (mti >= MT_N) {int kk;if (mti == MT_N + 1) init_genrand(5489UL);for (kk = 0; kk < MT_N - MT_M; kk++) {y = (mt[kk] & MT_UPPER_MASK) | (mt[kk+1] & MT_LOWER_MASK);mt[kk] = mt[kk+MT_M] ^ (y >> 1) ^ mag01[y&0x1UL];}for (; kk < MT_N - 1; kk++) {y = (mt[kk] & MT_UPPER_MASK) | (mt[kk+1] & MT_LOWER_MASK);mt[kk] = mt[kk+(MT_M-MT_N)] ^ (y >> 1) ^ mag01[y&0x1UL];}y = (mt[MT_N-1] & MT_UPPER_MASK) | (mt[0] & MT_LOWER_MASK);mt[MT_N-1] = mt[MT_M-1] ^ (y >> 1) ^ mag01[y&0x1UL];mti = 0;}y = mt[mti++];y ^= (y >> 11);y ^= (y << 7) & 0x9d2c5680UL;y ^= (y << 15) & 0xefc60000UL;y ^= (y >> 18);return y;}#define POWX 4 // 3 -> 2^8, 4 -> 2^16, 5 -> 2^32const unsigned int powd[5] = {2, 4, 16, 256, 65536}, powe[5] = {1, 2, 4, 8, 16};// Multiplication on a finite field of size 2^32 with XOR additionunsigned int nim_product(unsigned int A, unsigned int B){if (A > B) return nim_product(B, A);else if (A <= 1) return A * B;static unsigned int memo[256][256] = {};if (B < 256 && memo[A][B] != 0) return memo[A][B];int i;for (i = 0; i < POWX; i++) {if (B == powd[i]) {if (A == powd[i]) return (B >> 1) * 3;else return A * B;}}unsigned int a[2], b[2], ans[2][2];for (i = POWX - 1; i >= 0; i--) if (B > powd[i]) break;a[1] = A & (powd[i] - 1);a[0] = (A ^ a[1]) >> powe[i];b[1] = B & (powd[i] - 1);b[0] = (B ^ b[1]) >> powe[i];ans[0][0] = nim_product(a[0], b[0]);ans[0][1] = nim_product(a[0], b[1]);ans[1][0] = nim_product(a[1], b[0]);ans[1][1] = nim_product(a[1], b[1]);if (B < 256) {memo[A][B] = (ans[0][0] ^ ans[0][1] ^ ans[1][0]) * powd[i] ^ nim_product(ans[0][0], powd[i] >> 1) ^ ans[1][1];return memo[A][B];} else return (ans[0][0] ^ ans[0][1] ^ ans[1][0]) * powd[i] ^ nim_product(ans[0][0], powd[i] >> 1) ^ ans[1][1];}// Computing the length of a shortest cycle through K specified vertices in O(2^K LM) timeint shortest_cycle_through_specified_vertices(int N, edge* adj[], edge e[], int K, int T[]){static char flag[N_MAX + 1];static int i, u, w, s;static edge *p;for (u = 1; u <= N; u++) flag[u] = -1; // nonterminalsfor (i = 0, s = T[K-1]; i < K; i++) flag[T[i]] = i; // terminalsfor (u = 1; u <= N; u++) {for (p = adj[u]; p != NULL; p = p->next) {w = p->v;if (w < u) continue;p->label = genrand() % (powd[POWX] - 1) + 1;if (u != s && w != s) e[p->id ^ 1].label = p->label;else e[p->id ^ 1].label = genrand() % (powd[POWX] - 1) + 1; // around s}}static int k, l, cur, prev;static unsigned int dp[2][BIT_K_MAX][M_MAX * 2], tmp;for (k = 0; k < bit[K-1]; k++) {for (u = 1; u <= N; u++) {for (p = adj[u]; p != NULL; p = p->next) {dp[0][k][p->id] = 0;dp[1][k][p->id] = 0;}}}for (p = adj[s]; p != NULL; p = p->next) dp[0][0][p->id] = p->label;for (l = 1, cur = 1, prev = 0; l <= N; l++, cur ^= 1, prev ^= 1) {for (p = adj[s], tmp = 0; p != NULL; p = p->next) tmp ^= dp[prev][bit[K-1] - 1][p->id ^ 1];if (tmp != 0) return l;else if (l == N) return N + 1;for (k = 0; k < bit[K-1]; k++) {for (u = 1; u <= N; u++) {i = flag[u];if (u == s || (i >= 0 && (k & bit[i]) != 0)) continue;for (p = adj[u], tmp = 0; p != NULL; p = p->next) tmp ^= dp[prev][k][p->id ^ 1];for (p = adj[u]; p != NULL; p = p->next) {if (i < 0) dp[cur][k][p->id] = nim_product(tmp, p->label);else dp[cur][k | bit[i]][p->id] = nim_product(tmp ^ dp[prev][k][p->id ^ 1], p->label);dp[prev][k][p->id ^ 1] = 0;}}}}}int solve(int N, int M, int X, int Y, int Z, int A[], int B[]){static int K = 3, T[K_MAX], ans[2];static edge *adj[N_MAX + 1] = {}, e[M_MAX * 2];complement_graph(N, M, A, B, adj, e);T[0] = X;T[1] = Y;T[2] = Z;ans[0] = shortest_cycle_through_specified_vertices(N, adj, e, K, T);ans[1] = shortest_cycle_through_specified_vertices(N, adj, e, K, T);chmin(&(ans[0]), ans[1]);// ans[1] = shortest_cycle_through_specified_vertices(N, adj, e, K, T);// chmin(&(ans[0]), ans[1]);return (ans[0] <= N)? ans[0]: -1;}int main(){static int i, N, M, X, Y, Z, A[M_MAX + 1], B[M_MAX + 1];scanf("%d %d", &N, &M);scanf("%d %d %d", &X, &Y, &Z);for (i = 1; i <= M; i++) scanf("%d %d", &(A[i]), &(B[i]));printf("%d\n", solve(N, M, X, Y, Z, A, B));fflush(stdout);return 0;}