結果

問題 No.1768 The frog in the well knows the great ocean.
ユーザー leaf_1415leaf_1415
提出日時 2021-11-30 19:36:37
言語 C++11
(gcc 11.4.0)
結果
AC  
実行時間 55 ms / 3,000 ms
コード長 8,576 bytes
コンパイル時間 1,713 ms
コンパイル使用メモリ 113,184 KB
実行使用メモリ 15,768 KB
最終ジャッジ日時 2024-07-03 15:22:23
合計ジャッジ時間 4,353 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 3 ms
6,940 KB
testcase_02 AC 3 ms
6,944 KB
testcase_03 AC 4 ms
6,944 KB
testcase_04 AC 3 ms
6,944 KB
testcase_05 AC 3 ms
6,940 KB
testcase_06 AC 46 ms
6,948 KB
testcase_07 AC 44 ms
8,364 KB
testcase_08 AC 44 ms
8,132 KB
testcase_09 AC 43 ms
7,860 KB
testcase_10 AC 47 ms
8,540 KB
testcase_11 AC 49 ms
8,836 KB
testcase_12 AC 52 ms
10,016 KB
testcase_13 AC 51 ms
8,960 KB
testcase_14 AC 49 ms
8,964 KB
testcase_15 AC 51 ms
8,964 KB
testcase_16 AC 52 ms
14,108 KB
testcase_17 AC 55 ms
14,356 KB
testcase_18 AC 53 ms
14,236 KB
testcase_19 AC 54 ms
14,232 KB
testcase_20 AC 53 ms
14,124 KB
testcase_21 AC 2 ms
6,944 KB
testcase_22 AC 1 ms
6,944 KB
testcase_23 AC 2 ms
6,940 KB
testcase_24 AC 42 ms
6,944 KB
testcase_25 AC 44 ms
15,768 KB
testcase_26 AC 43 ms
15,516 KB
testcase_27 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cstdlib>
#include <cassert>
#include <vector>
#include <list>
#include <stack>
#include <queue>
#include <deque>
#include <map>
#include <set>
#include <bitset>
#include <string>
#include <algorithm>
#include <utility>
#include <complex>
#include <unordered_set>
#include <unordered_map>
#define rep(x, s, t) for(ll x = (s); (x) <= (t); (x)++)
#define per(x, s, t) for(ll x = (s); (x) >= (t); (x)--)
#define reps(x, s) for(ll x = 0; (x) < (ll)(s).size(); (x)++)
#define chmin(x, y) (x) = min((x), (y))
#define chmax(x, y) (x) = max((x), (y))
#define sz(x) ((ll)(x).size())
#define all(x) (x).begin(),(x).end()
#define outl(...) dump_func(__VA_ARGS__)
#define outf(x) cout << fixed << setprecision(16) << (x) << endl
#define inf 2e18
#define eps 1e-9
const double PI = 3.1415926535897932384626433;

using namespace std;

typedef long long llint;
typedef long long ll;
typedef pair<ll, ll> P;

struct edge{
	ll to, cost;
	edge(){}
	edge(ll a, ll b){ to = a, cost = b;}
};
const int dx[] = {1, 0, -1, 0}, dy[] = {0, -1, 0, 1};

//int mod = 1000000007;
int mod = 998244353;

struct mint{
	int x;
	mint(ll y = 0){if(y < 0 || y >= mod) y = (y%mod+mod)%mod; x = y;}
	mint(const mint &ope) {x = ope.x;}

	mint operator-(){return mint(-x);}
	mint operator+(const mint &ope){return mint(x) += ope;}
	mint operator-(const mint &ope){return mint(x) -= ope;}
	mint operator*(const mint &ope){return mint(x) *= ope;}
	mint operator/(const mint &ope){return mint(x) /= ope;}
	mint& operator+=(const mint &ope){x += ope.x; if(x >= mod) x -= mod; return *this;}
	mint& operator-=(const mint &ope){x += mod - ope.x; if(x >= mod) x -= mod; return *this;}
	mint& operator*=(const mint &ope){ll tmp = x; tmp *= ope.x, tmp %= mod; x = tmp; return *this;}
	mint& operator/=(const mint &ope){
		ll n = mod-2; mint mul = ope;
		while(n){if(n & 1) *this *= mul; mul *= mul; n >>= 1;}
		return *this;
	}
	mint inverse(){return mint(1) / *this;}
	bool operator ==(const mint &ope){return x == ope.x;}
	bool operator !=(const mint &ope){return x != ope.x;}
	bool operator <(const mint &ope)const{return x < ope.x;}
};
mint modpow(mint a, ll n){
	if(n == 0) return mint(1);
	if(n % 2) return a * modpow(a, n-1);
	else return modpow(a*a, n/2);
}
istream& operator >>(istream &is, mint &ope){ll t; is >> t, ope.x = t; return is;}
ostream& operator <<(ostream &os, mint &ope){return os << ope.x;}
ostream& operator <<(ostream &os, const mint &ope){return os << ope.x;}

ll modpow(ll a, ll n, ll mod){
	if(n == 0) return 1;
	if(n % 2) return ((a%mod) * (modpow(a, n-1, mod)%mod)) % mod;
	else return modpow((a*a)%mod, n/2, mod) % mod;
}

vector<mint> fact, fact_inv;
void make_fact(int n){
	fact.resize(n+1), fact_inv.resize(n+1);
	fact[0] = mint(1); rep(i, 1, n) fact[i] = fact[i-1] * mint(i);
	fact_inv[n] = fact[n].inverse(); per(i, n-1, 0) fact_inv[i] = fact_inv[i+1] * mint(i+1);
}
mint comb(int n, int k){ if(n < 0 || k < 0 || n < k) return mint(0); return fact[n] * fact_inv[k] * fact_inv[n-k];}
mint perm(int n, int k){ return comb(n, k) * fact[k]; }

vector<int> prime, pvec;
void make_prime(int n){
	prime.resize(n+1);
	rep(i, 2, n){
		if(prime[i]) continue;
		for(int j = i; j <= n; j += i) prime[j] = i;
	}
	rep(i, 2, n) if(prime[i] == i) pvec.push_back(i);
}

bool exceed(ll x, ll y, ll m){return x >= m / y + 1;}
void mark(){ cout << "*" << endl; }
void yes(){ cout << "YES" << endl; }
void no(){ cout << "NO" << endl; }
ll floor(ll a, ll b){ if(b < 0) a *= -1, b *= -1; if(a >= 0) return a/b; else return -((-a+b-1)/b); }
ll ceil(ll a, ll b){ if(b < 0) a *= -1, b *= -1; if(a >= 0) return (a+b-1)/b; else return -((-a)/b); }
ll modulo(ll a, ll b){ b = abs(b); return a - floor(a, b) * b;}
ll sgn(ll x){ if(x > 0) return 1; if(x < 0) return -1; return 0;}
ll gcd(ll a, ll b){if(b == 0) return a; return gcd(b, a%b);}
ll lcm(ll a, ll b){return a/gcd(a, b)*b;}
ll arith(ll x){return x*(x+1)/2;}
ll arith(ll l, ll r){return arith(r) - arith(l-1);}
ll digitnum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret++; return ret;}
ll digitsum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret += x % b; return ret;}
string lltos(ll x){string ret; for(;x;x/=10) ret += x % 10 + '0'; reverse(all(ret)); return ret;}
ll stoll(string &s){ll ret = 0; for(auto c : s) ret *= 10, ret += c - '0'; return ret;}
template<typename T> void uniq(T &vec){sort(all(vec)); vec.erase(unique(all(vec)), vec.end());}

template<class S, class T> pair<S, T>& operator+=(pair<S, T> &s, const pair<S, T> &t){s.first += t.first, s.second += t.second; return s;}
template<class S, class T> pair<S, T>& operator-=(pair<S, T> &s, const pair<S, T> &t){s.first -= t.first, s.second -= t.second; return s;}
template<class S, class T> pair<S, T> operator+(const pair<S, T> &s, const pair<S, T> &t){return pair<S,T>(s.first+t.first, s.second+t.second);}
template<class S, class T> pair<S, T> operator-(const pair<S, T> &s, const pair<S, T> &t){return pair<S,T>(s.first-t.first, s.second-t.second);}
template<class T> T dot(const pair<T, T> &s, const pair<T, T> &t){return s.first*t.first + s.second*t.second;}
template<class T> T cross(const pair<T, T> &s, const pair<T, T> &t){return s.first*t.second - s.second*t.first;}

template<typename T> ostream& operator << (ostream& os, vector<T>& vec){reps(i, vec) os << vec[i] << " "; return os;}
template<typename T> ostream& operator << (ostream& os, const vector<T>& vec){reps(i, vec) os << vec[i] << " "; return os;}
template<typename T> ostream& operator << (ostream& os, deque<T>& deq){reps(i,  deq) os << deq[i] << " "; return os;}
template<typename T, typename U> ostream& operator << (ostream& os, pair<T, U>& ope){ os << "(" << ope.first << ", " << ope.second << ")"; return os;}
template<typename T, typename U> ostream& operator << (ostream& os, const pair<T, U>& ope){ os << "(" << ope.first << ", " << ope.second << ")"; return os;}
template<typename T, typename U> ostream& operator << (ostream& os, map<T, U>& ope){ for(auto p : ope) os << "(" << p.first << ", " << p.second << "),";return os;}
template<typename T> ostream& operator << (ostream& os, set<T>& ope){for(auto x : ope) os << x << " "; return os;}
template<typename T> ostream& operator << (ostream& os, multiset<T>& ope){for(auto x : ope) os << x << " "; return os;}
template<typename T> void outa(T a[], ll s, ll t){rep(i, s, t){ cout << a[i]; if(i < t) cout << " ";} cout << endl;}
void dump_func(){cout << endl;}
template <class Head, class... Tail>
void dump_func(Head &&head, Tail &&... tail){cout << head; if(sizeof...(Tail) > 0) cout << " "; dump_func(std::move(tail)...);}



struct MaxRectangle{
	static void getNearestLess(vector<ll> vec, vector<ll> &lvec, vector<ll> &rvec)
	{
		ll n = sz(vec);
		lvec.resize(n), rvec.resize(n);
		
		stack<P> stk;
		stk.push(P(-inf, -1));
		
		rep(i, 0, n-1){
			while(stk.top().first >= vec[i]) stk.pop();
			lvec[i] = stk.top().second+1;
			stk.push(P(vec[i], i));
		}
		while(stk.size()) stk.pop();
		
		stk.push(P(-inf, n));
		per(i, n-1, 0){
			while(stk.top().first >= vec[i]) stk.pop();
			rvec[i] = stk.top().second-1;
			stk.push(P(vec[i], i));
		}
	}
	static void getNearestGreater(vector<ll> vec, vector<ll> &lvec, vector<ll> &rvec)
	{
		for(auto &x: vec) x *= -1;
		getNearestLess(vec, lvec, rvec);
	}
	
	//i番目の棒の高さ・幅をhvec[i], wvec[i]として受取り、最大長方形の面積(r-l+1)*hを返す。
	static ll calc(vector<ll> hvec, vector<ll> wvec, ll &l, ll &r, ll &h)
	{
		ll n = sz(hvec);
		
		vector<ll> wsum(n+1);
		wsum.push_back(0);
		rep(i, 1, n) wsum[i] = wsum[i-1] + wvec[i-1];
		
		vector<ll> lvec, rvec;
		getNearestLess(hvec, lvec, rvec);
		
		ll ret = -1, tmp;
		rep(i, 0, n-1){
			tmp = (wsum[rvec[i]+1]-wsum[lvec[i]]) * hvec[i];
			if(ret < tmp) ret = tmp, l = lvec[i], r = rvec[i], h = hvec[i];
		}
		return ret;
	}
	static ll calc(vector<ll> hvec)
	{
		ll l, r, h;
		vector<ll> wvec;
		reps(i, hvec) wvec.push_back(1);
		return calc(hvec, wvec, l, r, h);
	}
};



ll T;
ll n;
ll a[200005], b[200005];

int main(void)
{
	ios::sync_with_stdio(0);
	cin.tie(0);

	cin >> T;
	while(T--){
		cin >> n;
		rep(i, 0, n-1) cin >> a[i];
		rep(i, 0, n-1) cin >> b[i];
		
		vector<ll> vec, l, r;
		rep(i, 0, n-1) vec.push_back(a[i]);
		MaxRectangle::getNearestGreater(vec, l, r);
		
		ll p = 0; bool flag = true;
		rep(i, 0, n-1){
			while(p < n && (b[i] != a[p] || l[p] > i || i > r[p])) p++;
			if(p >= n){
				flag = false;
				break;
			}
		}
		if(flag) cout << "Yes" << "\n";
		else cout << "No" << "\n";

	}

	return 0;
}
0