結果
問題 | No.1504 ヌメロニム |
ユーザー | koba-e964 |
提出日時 | 2021-12-02 20:32:52 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 380 ms / 2,000 ms |
コード長 | 10,521 bytes |
コンパイル時間 | 13,225 ms |
コンパイル使用メモリ | 402,268 KB |
実行使用メモリ | 33,708 KB |
最終ジャッジ日時 | 2024-07-05 02:05:31 |
合計ジャッジ時間 | 22,394 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,816 KB |
testcase_01 | AC | 1 ms
6,816 KB |
testcase_02 | AC | 1 ms
6,940 KB |
testcase_03 | AC | 0 ms
6,940 KB |
testcase_04 | AC | 1 ms
6,944 KB |
testcase_05 | AC | 1 ms
6,940 KB |
testcase_06 | AC | 0 ms
6,944 KB |
testcase_07 | AC | 1 ms
6,944 KB |
testcase_08 | AC | 1 ms
6,940 KB |
testcase_09 | AC | 1 ms
6,944 KB |
testcase_10 | AC | 1 ms
6,944 KB |
testcase_11 | AC | 1 ms
6,940 KB |
testcase_12 | AC | 1 ms
6,940 KB |
testcase_13 | AC | 1 ms
6,940 KB |
testcase_14 | AC | 1 ms
6,940 KB |
testcase_15 | AC | 1 ms
6,944 KB |
testcase_16 | AC | 1 ms
6,940 KB |
testcase_17 | AC | 1 ms
6,944 KB |
testcase_18 | AC | 1 ms
6,940 KB |
testcase_19 | AC | 1 ms
6,940 KB |
testcase_20 | AC | 2 ms
6,944 KB |
testcase_21 | AC | 1 ms
6,940 KB |
testcase_22 | AC | 3 ms
6,944 KB |
testcase_23 | AC | 1 ms
6,944 KB |
testcase_24 | AC | 380 ms
32,132 KB |
testcase_25 | AC | 181 ms
20,744 KB |
testcase_26 | AC | 370 ms
33,476 KB |
testcase_27 | AC | 190 ms
22,852 KB |
testcase_28 | AC | 188 ms
22,952 KB |
testcase_29 | AC | 374 ms
33,104 KB |
testcase_30 | AC | 373 ms
33,136 KB |
testcase_31 | AC | 182 ms
21,732 KB |
testcase_32 | AC | 187 ms
22,644 KB |
testcase_33 | AC | 377 ms
32,640 KB |
testcase_34 | AC | 43 ms
6,940 KB |
testcase_35 | AC | 43 ms
6,940 KB |
testcase_36 | AC | 180 ms
17,208 KB |
testcase_37 | AC | 21 ms
6,940 KB |
testcase_38 | AC | 370 ms
33,508 KB |
testcase_39 | AC | 368 ms
33,412 KB |
testcase_40 | AC | 374 ms
33,596 KB |
testcase_41 | AC | 374 ms
33,564 KB |
testcase_42 | AC | 377 ms
33,708 KB |
testcase_43 | AC | 377 ms
33,560 KB |
testcase_44 | AC | 375 ms
33,416 KB |
testcase_45 | AC | 372 ms
33,508 KB |
testcase_46 | AC | 369 ms
33,496 KB |
testcase_47 | AC | 368 ms
33,532 KB |
testcase_48 | AC | 185 ms
21,756 KB |
testcase_49 | AC | 182 ms
20,688 KB |
testcase_50 | AC | 3 ms
6,940 KB |
testcase_51 | AC | 2 ms
6,944 KB |
testcase_52 | AC | 1 ms
6,940 KB |
testcase_53 | AC | 2 ms
6,940 KB |
testcase_54 | AC | 1 ms
6,940 KB |
testcase_55 | AC | 42 ms
6,940 KB |
testcase_56 | AC | 1 ms
6,944 KB |
testcase_57 | AC | 1 ms
6,940 KB |
testcase_58 | AC | 1 ms
6,940 KB |
testcase_59 | AC | 1 ms
6,944 KB |
testcase_60 | AC | 1 ms
6,944 KB |
ソースコード
#[allow(unused_imports)] use std::cmp::*; #[allow(unused_imports)] use std::collections::*; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr,) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, chars) => { read_value!($next, String).chars().collect::<Vec<char>>() }; ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } /// Verified by https://atcoder.jp/contests/abc198/submissions/21774342 mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> } impl<M: Mod> ModInt<M> { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl<M: Mod> Default for ModInt<M> { fn default() -> Self { Self::new_internal(0) } } impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl<M: Mod> Neg for ModInt<M> { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl<M> ::std::fmt::Display for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl<M: Mod> ::std::fmt::Debug for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { let (mut a, mut b, _) = red(self.x, M::m()); if b < 0 { a = -a; b = -b; } write!(f, "{}/{}", a, b) } } impl<M: Mod> From<i64> for ModInt<M> { fn from(x: i64) -> Self { Self::new(x) } } // Finds the simplest fraction x/y congruent to r mod p. // The return value (x, y, z) satisfies x = y * r + z * p. fn red(r: i64, p: i64) -> (i64, i64, i64) { if r.abs() <= 10000 { return (r, 1, 0); } let mut nxt_r = p % r; let mut q = p / r; if 2 * nxt_r >= r { nxt_r -= r; q += 1; } if 2 * nxt_r <= -r { nxt_r += r; q -= 1; } let (x, z, y) = red(nxt_r, r); (x, y - q * z, z) } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 998_244_353; define_mod!(P, MOD); type MInt = mod_int::ModInt<P>; // Depends on MInt.rs fn fact_init(w: usize) -> (Vec<MInt>, Vec<MInt>) { let mut fac = vec![MInt::new(1); w]; let mut invfac = vec![0.into(); w]; for i in 1..w { fac[i] = fac[i - 1] * i as i64; } invfac[w - 1] = fac[w - 1].inv(); for i in (0..w - 1).rev() { invfac[i] = invfac[i + 1] * (i as i64 + 1); } (fac, invfac) } // FFT (in-place, verified as NTT only) // R: Ring + Copy // Verified by: https://judge.yosupo.jp/submission/53831 // Adopts the technique used in https://judge.yosupo.jp/submission/3153. mod fft { use std::ops::*; // n should be a power of 2. zeta is a primitive n-th root of unity. // one is unity // Note that the result is bit-reversed. pub fn fft<R>(f: &mut [R], zeta: R, one: R) where R: Copy + Add<Output = R> + Sub<Output = R> + Mul<Output = R> { let n = f.len(); assert!(n.is_power_of_two()); let mut m = n; let mut base = zeta; unsafe { while m > 2 { m >>= 1; let mut r = 0; while r < n { let mut w = one; for s in r..r + m { let &u = f.get_unchecked(s); let d = *f.get_unchecked(s + m); *f.get_unchecked_mut(s) = u + d; *f.get_unchecked_mut(s + m) = w * (u - d); w = w * base; } r += 2 * m; } base = base * base; } if m > 1 { // m = 1 let mut r = 0; while r < n { let &u = f.get_unchecked(r); let d = *f.get_unchecked(r + 1); *f.get_unchecked_mut(r) = u + d; *f.get_unchecked_mut(r + 1) = u - d; r += 2; } } } } pub fn inv_fft<R>(f: &mut [R], zeta_inv: R, one: R) where R: Copy + Add<Output = R> + Sub<Output = R> + Mul<Output = R> { let n = f.len(); assert!(n.is_power_of_two()); let zeta = zeta_inv; // inverse FFT let mut zetapow = Vec::with_capacity(20); { let mut m = 1; let mut cur = zeta; while m < n { zetapow.push(cur); cur = cur * cur; m *= 2; } } let mut m = 1; unsafe { if m < n { zetapow.pop(); let mut r = 0; while r < n { let &u = f.get_unchecked(r); let d = *f.get_unchecked(r + 1); *f.get_unchecked_mut(r) = u + d; *f.get_unchecked_mut(r + 1) = u - d; r += 2; } m = 2; } while m < n { let base = zetapow.pop().unwrap(); let mut r = 0; while r < n { let mut w = one; for s in r..r + m { let &u = f.get_unchecked(s); let d = *f.get_unchecked(s + m) * w; *f.get_unchecked_mut(s) = u + d; *f.get_unchecked_mut(s + m) = u - d; w = w * base; } r += 2 * m; } m *= 2; } } } } // Depends on: fft.rs, MInt.rs // Primitive root defaults to 3 (for 998244353); for other moduli change the value of it. fn conv(a: Vec<MInt>, b: Vec<MInt>) -> Vec<MInt> { let n = a.len() - 1; let m = b.len() - 1; let mut p = 1; while p <= n + m { p *= 2; } let mut f = vec![MInt::new(0); p]; let mut g = vec![MInt::new(0); p]; for i in 0..n + 1 { f[i] = a[i]; } for i in 0..m + 1 { g[i] = b[i]; } let fac = MInt::new(p as i64).inv(); let zeta = MInt::new(3).pow((MOD - 1) / p as i64); fft::fft(&mut f, zeta, 1.into()); fft::fft(&mut g, zeta, 1.into()); for i in 0..p { f[i] *= g[i] * fac; } fft::inv_fft(&mut f, zeta.inv(), 1.into()); f[..n + m + 1].to_vec() } fn fps_taylor_shift(a: &[MInt], c: MInt, gen: MInt, fac: &[MInt], invfac: &[MInt]) -> Vec<MInt> { let n = a.len(); let mut p = 1; while p < 2 * n { p *= 2; } let mut f = vec![MInt::new(0); p]; let mut g = vec![MInt::new(0); p]; let mut cur = MInt::new(1); for i in 0..n { f[i] = fac[i] * a[i]; g[(p - i) % p] = cur * invfac[i]; cur *= c; } let zeta = gen.pow((MOD - 1) / p as i64); let factor = MInt::new(p as i64).inv(); fft::fft(&mut f, zeta, 1.into()); fft::fft(&mut g, zeta, 1.into()); for i in 0..p { f[i] *= g[i] * factor; } fft::inv_fft(&mut f, zeta.inv(), 1.into()); for i in 0..n { f[i] *= invfac[i]; } f.truncate(n); f } fn main() { input! { n: usize, s: chars, } let (fac, invfac) = fact_init(n + 1); let mut f = vec![MInt::new(0); n]; let mut g = vec![MInt::new(0); n]; for i in 0..n { if s[i] == 'i' { f[n - 1 - i] += 1; } else { g[i] += 1; } } let res = conv(f, g); let sh = fps_taylor_shift(&res[n..], 1.into(), 3.into(), &fac, &invfac); // eprintln!("sh = {:?}", sh); let mut ans = 0; for i in 0..n - 1 { ans ^= sh[i].x; } println!("{}", ans); }