結果
問題 | No.1775 Love Triangle 2 |
ユーザー | hitonanode |
提出日時 | 2021-12-04 18:07:59 |
言語 | C++17(clang) (17.0.6 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 50 ms / 8,000 ms |
コード長 | 8,003 bytes |
コンパイル時間 | 2,769 ms |
コンパイル使用メモリ | 136,600 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-07 00:30:30 |
合計ジャッジ時間 | 7,915 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 27 ms
5,376 KB |
testcase_05 | AC | 28 ms
5,376 KB |
testcase_06 | AC | 29 ms
5,376 KB |
testcase_07 | AC | 25 ms
5,376 KB |
testcase_08 | AC | 25 ms
5,376 KB |
testcase_09 | AC | 28 ms
5,376 KB |
testcase_10 | AC | 32 ms
5,376 KB |
testcase_11 | AC | 35 ms
5,376 KB |
testcase_12 | AC | 36 ms
5,376 KB |
testcase_13 | AC | 43 ms
5,376 KB |
testcase_14 | AC | 44 ms
5,376 KB |
testcase_15 | AC | 45 ms
5,376 KB |
testcase_16 | AC | 48 ms
5,376 KB |
testcase_17 | AC | 50 ms
5,376 KB |
testcase_18 | AC | 46 ms
5,376 KB |
testcase_19 | AC | 32 ms
5,376 KB |
testcase_20 | AC | 33 ms
5,376 KB |
testcase_21 | AC | 34 ms
5,376 KB |
testcase_22 | AC | 38 ms
5,376 KB |
testcase_23 | AC | 39 ms
5,376 KB |
testcase_24 | AC | 33 ms
5,376 KB |
testcase_25 | AC | 37 ms
5,376 KB |
testcase_26 | AC | 40 ms
5,376 KB |
testcase_27 | AC | 37 ms
5,376 KB |
testcase_28 | AC | 44 ms
5,376 KB |
testcase_29 | AC | 50 ms
5,376 KB |
testcase_30 | AC | 50 ms
5,376 KB |
testcase_31 | AC | 42 ms
5,376 KB |
testcase_32 | AC | 42 ms
5,376 KB |
testcase_33 | AC | 36 ms
5,376 KB |
testcase_34 | AC | 35 ms
5,376 KB |
testcase_35 | AC | 33 ms
5,376 KB |
testcase_36 | AC | 29 ms
5,376 KB |
testcase_37 | AC | 29 ms
5,376 KB |
testcase_38 | AC | 27 ms
5,376 KB |
testcase_39 | AC | 46 ms
5,376 KB |
testcase_40 | AC | 46 ms
5,376 KB |
testcase_41 | AC | 43 ms
5,376 KB |
testcase_42 | AC | 40 ms
5,376 KB |
testcase_43 | AC | 37 ms
5,376 KB |
testcase_44 | AC | 38 ms
5,376 KB |
testcase_45 | AC | 33 ms
5,376 KB |
testcase_46 | AC | 33 ms
5,376 KB |
testcase_47 | AC | 32 ms
5,376 KB |
testcase_48 | AC | 28 ms
5,376 KB |
testcase_49 | AC | 49 ms
5,376 KB |
testcase_50 | AC | 48 ms
5,376 KB |
testcase_51 | AC | 42 ms
5,376 KB |
testcase_52 | AC | 41 ms
5,376 KB |
testcase_53 | AC | 34 ms
5,376 KB |
testcase_54 | AC | 36 ms
5,376 KB |
testcase_55 | AC | 34 ms
5,376 KB |
testcase_56 | AC | 35 ms
5,376 KB |
testcase_57 | AC | 32 ms
5,376 KB |
testcase_58 | AC | 29 ms
5,376 KB |
testcase_59 | AC | 45 ms
5,376 KB |
testcase_60 | AC | 47 ms
5,376 KB |
testcase_61 | AC | 43 ms
5,376 KB |
testcase_62 | AC | 42 ms
5,376 KB |
testcase_63 | AC | 39 ms
5,376 KB |
testcase_64 | AC | 42 ms
5,376 KB |
testcase_65 | AC | 37 ms
5,376 KB |
testcase_66 | AC | 35 ms
5,376 KB |
testcase_67 | AC | 32 ms
5,376 KB |
testcase_68 | AC | 35 ms
5,376 KB |
testcase_69 | AC | 29 ms
5,376 KB |
testcase_70 | AC | 29 ms
5,376 KB |
testcase_71 | AC | 28 ms
5,376 KB |
testcase_72 | AC | 27 ms
5,376 KB |
testcase_73 | AC | 28 ms
5,376 KB |
testcase_74 | AC | 27 ms
5,376 KB |
testcase_75 | AC | 27 ms
5,376 KB |
testcase_76 | AC | 27 ms
5,376 KB |
testcase_77 | AC | 27 ms
5,376 KB |
testcase_78 | AC | 28 ms
5,376 KB |
testcase_79 | AC | 31 ms
5,376 KB |
testcase_80 | AC | 32 ms
5,376 KB |
testcase_81 | AC | 31 ms
5,376 KB |
testcase_82 | AC | 34 ms
5,376 KB |
testcase_83 | AC | 32 ms
5,376 KB |
testcase_84 | AC | 32 ms
5,376 KB |
testcase_85 | AC | 31 ms
5,376 KB |
testcase_86 | AC | 33 ms
5,376 KB |
testcase_87 | AC | 31 ms
5,376 KB |
testcase_88 | AC | 30 ms
5,376 KB |
testcase_89 | AC | 28 ms
5,376 KB |
ソースコード
// O(n^3) weighted-linear-matroid-parity-based solution #include <algorithm> #include <cassert> #include <iostream> #include <numeric> #include <tuple> #include <type_traits> #include <utility> #include <vector> using namespace std; #include <atcoder/modint> using mint = atcoder::static_modint<(1 << 30) + 3>; uint32_t rand_int() { static uint32_t x = 123456789, y = 362436069, z = 521288629, w = 88675123; uint32_t t = x ^ (x << 11); x = y; y = z; z = w; return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)); } tuple<int, int, int, int, vector<vector<int>>> read_input() { int N, M, X, Y, Z; cin >> N >> M >> X >> Y >> Z; --X, --Y, --Z; vector mat(N, vector<int>(N)); for (int i = 0; i < N; ++i) { for (int j = 0; j < N; ++j) mat[i][j] = (i != j); } while (M--) { int a, b; cin >> a >> b; --a, --b; mat[a][b] = mat[b][a] = 0; } vector<vector<int>> to(N); for (int i = 0; i < N; ++i) { for (int j = 0; j < N; ++j) { if (mat[i][j]) to[i].push_back(j); } } return {N, X, Y, Z, to}; } // Upper Hessenberg reduction of square matrices // Complexity: O(n^3) // Reference: // http://www.phys.uri.edu/nigh/NumRec/bookfpdf/f11-5.pdf template <class Tp> void hessenberg_reduction(std::vector<std::vector<Tp>> &M) { assert(M.size() == M[0].size()); const int N = M.size(); for (int r = 0; r < N - 2; r++) { int piv = -1; for (int j = r + 1; j < N; ++j) if (M[j][r] != 0) { piv = j; break; } if (piv < 0) continue; for (int i = 0; i < N; i++) std::swap(M[r + 1][i], M[piv][i]); for (int i = 0; i < N; i++) std::swap(M[i][r + 1], M[i][piv]); const auto rinv = Tp(1) / M[r + 1][r]; for (int i = r + 2; i < N; i++) { const auto n = M[i][r] * rinv; for (int j = 0; j < N; j++) M[i][j] -= M[r + 1][j] * n; for (int j = 0; j < N; j++) M[j][r + 1] += M[j][i] * n; } } } // Characteristic polynomial of matrix M (|xI - M|) // Complexity: O(n^3) // R. Rehman, I. C. Ipsen, "La Budde's Method for Computing Characteristic Polynomials," 2011. template <class Tp> std::vector<Tp> characteristic_poly(std::vector<std::vector<Tp>> &M) { hessenberg_reduction(M); const int N = M.size(); std::vector<std::vector<Tp>> p(N + 1); // p[i + 1] = (Characteristic polynomial of i-th leading principal minor) p[0] = {1}; for (int i = 0; i < N; i++) { p[i + 1].assign(i + 2, 0); for (int j = 0; j < i + 1; j++) p[i + 1][j + 1] += p[i][j]; for (int j = 0; j < i + 1; j++) p[i + 1][j] -= p[i][j] * M[i][i]; Tp betas = 1; for (int j = i - 1; j >= 0; j--) { betas *= M[j + 1][j]; Tp hb = -M[j][i] * betas; for (int k = 0; k < j + 1; k++) p[i + 1][k] += hb * p[j][k]; } } return p[N]; } int main() { cin.tie(nullptr), ios::sync_with_stdio(false); auto Graph = read_input(); const int X = get<1>(Graph), Y = get<2>(Graph), Z = get<3>(Graph); auto to = get<4>(Graph); const int N = to.size(); const int V = N + 5, r = V * 2 - 8; // https://drops.dagstuhl.de/opus/volltexte/2016/6832/ // 2.1 の Remark に従って行列を構築 // X を (X, N) に,Y を (Y, N + 1) に,Z を (Z, N + 2) にそれぞれ分裂 // 論文 Fig. 1 の b1, b2 が N + 3, N + 4 に対応 const vector<int> terminal_vs{X, Y, Z, N, N + 1, N + 2, N + 3, N + 4}; auto Label = [&](int i) -> int { if (i == X or i == N) return 1; if (i == Y or i == N + 1) return 2; if (i == Z or i == N + 2) return 3; if (i == N + 3) return 4; if (i == N + 4) return 5; return 0; }; // 論文通りに実装すると Z は 2(N + 5) * M 行列となるが,all zero な行が 8 つ発生して厄介 // なので,これらを潰して (2N + 2) * M 行列(feasible ならばこれは行フルランク)を構築. // 潰した行を飛ばした index を取得する関数 auto truncate = [&](int i) -> int { int red = 0; for (auto l : terminal_vs) { if (l * 2 < i) ++red; } return i - red; }; // Z の各列ベクトルを生成 // 各列はスパースなので,ノンゼロな要素番号とその値のペアの列を返す auto gen_edge_vec = [&](int i, int j) -> pair<vector<pair<int, mint>>, vector<pair<int, mint>>> { vector<pair<int, mint>> bret, cret; if (Label(i)) { bret.emplace_back(truncate(i * 2 + 1), -Label(i)); } else { bret.emplace_back(truncate(i * 2), 1); } if (Label(j)) { bret.emplace_back(truncate(j * 2 + 1), Label(j)); } else { bret.emplace_back(truncate(j * 2), -1); } cret.emplace_back(truncate(i * 2 + 1), 1); cret.emplace_back(truncate(j * 2 + 1), -1); return {bret, cret}; }; to.resize(N + 3); for (auto i : to[X]) { to[N].push_back(i); to[i].push_back(N); } for (auto i : to[Y]) { to[N + 1].push_back(i); to[i].push_back(N + 1); } for (auto i : to[Z]) { to[N + 2].push_back(i); to[i].push_back(N + 2); } // 論文通りに辺を張る vector<tuple<vector<pair<int, mint>>, vector<pair<int, mint>>, int>> bcws; for (int i = 0; i < N + 3; ++i) { for (int j : to[i]) { if (i > j) continue; auto [b, c] = gen_edge_vec(i, j); bcws.emplace_back(b, c, 1); } if (!Label(i)) { auto [b, c] = gen_edge_vec(i, N + 3); bcws.emplace_back(b, c, 0); } } { auto [b, c] = gen_edge_vec(N + 3, N + 4); bcws.emplace_back(b, c, 0); } // M(x) = mat0 + mat1 * x vector mat0(r, vector<mint>(r)); vector mat1(r, vector<mint>(r)); for (const auto &[b, c, w] : bcws) { mint x = rand_int() % mint::mod(); mint y = rand_int() % mint::mod(); for (auto [i, bi] : b) { for (auto [j, cj] : c) { auto v = bi * cj * x; if (w == 0) { mat0[i][j] += v; mat0[j][i] -= v; mat1[i][j] += v * y; mat1[j][i] -= v * y; } if (w == 1) { mat1[i][j] += v; mat1[j][i] -= v; } } } } // det(x mat1 + mat0) を x の多項式として求めたい // mat1 を掃き出して det(\lambda I - A) の形に帰着させる for (int i = 0; i < r; ++i) { int piv = -1; for (int h = i; h < r; ++h) { if (mat1[h][i] != 0) piv = h; } if (piv < 0) { cout << "-1\n"; return 0; } assert(piv >= i); swap(mat0[i], mat0[piv]); swap(mat1[i], mat1[piv]); if (i != piv) { for (int w = 0; w < r; ++w) { mat0[i][w] *= -1; mat1[i][w] *= -1; } } mint inv = mat1[i][i].inv(); for (int w = 0; w < r; ++w) { mat0[i][w] *= inv; mat1[i][w] *= inv; } for (int h = 0; h < r; ++h) { if (h == i) continue; if (mat1[h][i] == 0) continue; const mint coeff = mat1[h][i]; for (int w = 0; w < r; ++w) { mat1[h][w] -= coeff * mat1[i][w]; mat0[h][w] -= coeff * mat0[i][w]; } } } for(auto &v : mat0) for (auto &x : v) x = -x; auto det_poly = characteristic_poly<mint>(mat0); int ret = 0; while (ret < int(det_poly.size()) and det_poly[ret] == 0) ++ret; if (ret < int(det_poly.size())) { cout << ret / 2 << '\n'; } else { cout << "-1\n"; } }