結果
問題 | No.1775 Love Triangle 2 |
ユーザー | Pachicobue |
提出日時 | 2021-12-05 05:24:30 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 61,639 bytes |
コンパイル時間 | 4,049 ms |
コンパイル使用メモリ | 246,436 KB |
実行使用メモリ | 5,660 KB |
最終ジャッジ日時 | 2024-07-07 07:00:32 |
合計ジャッジ時間 | 5,164 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | AC | 3 ms
5,376 KB |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | AC | 3 ms
5,376 KB |
testcase_16 | AC | 3 ms
5,376 KB |
testcase_17 | AC | 4 ms
5,376 KB |
testcase_18 | AC | 4 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | AC | 3 ms
5,376 KB |
testcase_24 | WA | - |
testcase_25 | AC | 3 ms
5,376 KB |
testcase_26 | AC | 3 ms
5,376 KB |
testcase_27 | AC | 3 ms
5,376 KB |
testcase_28 | AC | 2 ms
5,376 KB |
testcase_29 | AC | 6 ms
5,660 KB |
testcase_30 | AC | 5 ms
5,376 KB |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | WA | - |
testcase_38 | AC | 3 ms
5,376 KB |
testcase_39 | AC | 5 ms
5,376 KB |
testcase_40 | WA | - |
testcase_41 | WA | - |
testcase_42 | WA | - |
testcase_43 | WA | - |
testcase_44 | WA | - |
testcase_45 | WA | - |
testcase_46 | WA | - |
testcase_47 | WA | - |
testcase_48 | WA | - |
testcase_49 | AC | 5 ms
5,404 KB |
testcase_50 | AC | 4 ms
5,376 KB |
testcase_51 | WA | - |
testcase_52 | WA | - |
testcase_53 | WA | - |
testcase_54 | WA | - |
testcase_55 | WA | - |
testcase_56 | WA | - |
testcase_57 | WA | - |
testcase_58 | WA | - |
testcase_59 | AC | 5 ms
5,404 KB |
testcase_60 | WA | - |
testcase_61 | WA | - |
testcase_62 | WA | - |
testcase_63 | WA | - |
testcase_64 | WA | - |
testcase_65 | AC | 3 ms
5,376 KB |
testcase_66 | AC | 2 ms
5,376 KB |
testcase_67 | WA | - |
testcase_68 | WA | - |
testcase_69 | WA | - |
testcase_70 | WA | - |
testcase_71 | WA | - |
testcase_72 | WA | - |
testcase_73 | WA | - |
testcase_74 | WA | - |
testcase_75 | WA | - |
testcase_76 | WA | - |
testcase_77 | WA | - |
testcase_78 | WA | - |
testcase_79 | WA | - |
testcase_80 | WA | - |
testcase_81 | WA | - |
testcase_82 | WA | - |
testcase_83 | WA | - |
testcase_84 | WA | - |
testcase_85 | WA | - |
testcase_86 | WA | - |
testcase_87 | WA | - |
testcase_88 | WA | - |
testcase_89 | WA | - |
ソースコード
#include <bits/stdc++.h> #pragma region Header using i32 = int; using u32 = unsigned int; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; using f64 = double; using f80 = long double; using f128 = __float128; constexpr i32 operator"" _i32(u64 v) { return v; } constexpr i32 operator"" _u32(u64 v) { return v; } constexpr i64 operator"" _i64(u64 v) { return v; } constexpr u64 operator"" _u64(u64 v) { return v; } constexpr f64 operator"" _f64(f80 v) { return v; } constexpr f80 operator"" _f80(f80 v) { return v; } using Istream = std::istream; using Ostream = std::ostream; using Str = std::string; template<typename T> using Lt = std::less<T>; template<typename T> using Gt = std::greater<T>; template<typename T> using IList = std::initializer_list<T>; template<int n> using BSet = std::bitset<n>; template<typename T1, typename T2> using Pair = std::pair<T1, T2>; template<typename... Ts> using Tup = std::tuple<Ts...>; template<typename T, int N> using Arr = std::array<T, N>; template<typename... Ts> using Deq = std::deque<Ts...>; template<typename... Ts> using Set = std::set<Ts...>; template<typename... Ts> using MSet = std::multiset<Ts...>; template<typename... Ts> using USet = std::unordered_set<Ts...>; template<typename... Ts> using UMSet = std::unordered_multiset<Ts...>; template<typename... Ts> using Map = std::map<Ts...>; template<typename... Ts> using MMap = std::multimap<Ts...>; template<typename... Ts> using UMap = std::unordered_map<Ts...>; template<typename... Ts> using UMMap = std::unordered_multimap<Ts...>; template<typename... Ts> using Vec = std::vector<Ts...>; template<typename... Ts> using Stack = std::stack<Ts...>; template<typename... Ts> using Queue = std::queue<Ts...>; template<typename T> using MaxHeap = std::priority_queue<T>; template<typename T> using MinHeap = std::priority_queue<T, Vec<T>, Gt<T>>; using NSec = std::chrono::nanoseconds; using USec = std::chrono::microseconds; using MSec = std::chrono::milliseconds; using Sec = std::chrono::seconds; template<typename T> constexpr T LIMMIN = std::numeric_limits<T>::min(); template<typename T> constexpr T LIMMAX = std::numeric_limits<T>::max(); template<typename T> constexpr T INF = (LIMMAX<T> - 1) / 2; template<typename T> constexpr T PI = T{3.141592653589793238462643383279502884}; template<typename T = u64> constexpr T TEN(const int n) { return n == 0 ? T{1} : TEN<T>(n - 1) * T{10}; } Ostream& operator<<(Ostream& os, i128 v) { bool minus = false; if (v < 0) { minus = true, v = -v; } Str ans; if (v == 0) { ans = "0"; } while (v) { ans.push_back('0' + v % 10), v /= 10; } std::reverse(ans.begin(), ans.end()); return os << (minus ? "-" : "") << ans; } Ostream& operator<<(Ostream& os, u128 v) { Str ans; if (v == 0) { ans = "0"; } while (v) { ans.push_back('0' + v % 10), v /= 10; } std::reverse(ans.begin(), ans.end()); return os << ans; } template<typename T> bool chmin(T& a, const T& b) { if (a > b) { a = b; return true; } else { return false; } } template<typename T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return true; } else { return false; } } template<typename T> constexpr T floorDiv(T x, T y) { if (y < T{}) { x = -x, y = -y; } return x >= T{} ? x / y : (x - y + 1) / y; } template<typename T> constexpr T ceilDiv(T x, T y) { if (y < T{}) { x = -x, y = -y; } return x >= T{} ? (x + y - 1) / y : x / y; } template<typename T, typename I> constexpr T modPower(T v, I n, T mod) { T ans = 1 % mod; for (; n > 0; n >>= 1, (v *= v) %= mod) { if (n % 2 == 1) { (ans *= v) %= mod; } } return ans; } template<typename T, typename I> constexpr T power(T v, I n) { T ans = 1; for (; n > 0; n >>= 1, v *= v) { if (n % 2 == 1) { ans *= v; } } return ans; } template<typename T, typename I> constexpr T power(T v, I n, const T& e) { T ans = e; for (; n > 0; n >>= 1, v *= v) { if (n % 2 == 1) { ans *= v; } } return ans; } template<typename T> Vec<T> operator+=(Vec<T>& vs1, const Vec<T>& vs2) { vs1.insert(vs1.end(), vs2.begin(), vs2.end()); return vs1; } template<typename T> Vec<T> operator+(const Vec<T>& vs1, const Vec<T>& vs2) { auto vs = vs1; vs += vs2; return vs; } template<typename Vs, typename V> void fillAll(Vs& arr, const V& v) { if constexpr (std::is_convertible<V, Vs>::value) { arr = v; } else { for (auto& subarr : arr) { fillAll(subarr, v); } } } template<typename Vs> void sortAll(Vs& vs) { std::sort(std::begin(vs), std::end(vs)); } template<typename Vs, typename C> void sortAll(Vs& vs, C comp) { std::sort(std::begin(vs), std::end(vs), comp); } template<typename Vs> void reverseAll(Vs& vs) { std::reverse(std::begin(vs), std::end(vs)); } template<typename V, typename Vs> V sumAll(const Vs& vs) { if constexpr (std::is_convertible<Vs, V>::value) { return static_cast<V>(vs); } else { V ans = 0; for (const auto& v : vs) { ans += sumAll<V>(v); } return ans; } } template<typename Vs> int minInd(const Vs& vs) { return std::min_element(std::begin(vs), std::end(vs)) - std::begin(vs); } template<typename Vs> int maxInd(const Vs& vs) { return std::max_element(std::begin(vs), std::end(vs)) - std::begin(vs); } template<typename Vs, typename V> int lbInd(const Vs& vs, const V& v) { return std::lower_bound(std::begin(vs), std::end(vs), v) - std::begin(vs); } template<typename Vs, typename V> int ubInd(const Vs& vs, const V& v) { return std::upper_bound(std::begin(vs), std::end(vs), v) - std::begin(vs); } template<typename T, typename F> Vec<T> genVec(int n, F gen) { Vec<T> ans; std::generate_n(std::back_insert_iterator(ans), n, gen); return ans; } Vec<int> iotaVec(int n, int offset = 0) { Vec<int> ans(n); std::iota(ans.begin(), ans.end(), offset); return ans; } constexpr int popcount(const u64 v) { return v ? __builtin_popcountll(v) : 0; } constexpr int log2p1(const u64 v) { return v ? 64 - __builtin_clzll(v) : 0; } constexpr int lsbp1(const u64 v) { return __builtin_ffsll(v); } constexpr int clog(const u64 v) { return v ? log2p1(v - 1) : 0; } constexpr u64 ceil2(const u64 v) { const int l = clog(v); return (l == 64) ? 0_u64 : (1_u64 << l); } constexpr u64 floor2(const u64 v) { return v ? (1_u64 << (log2p1(v) - 1)) : 0_u64; } constexpr bool ispow2(const u64 v) { return (v > 0) and ((v & (v - 1)) == 0); } constexpr bool btest(const u64 mask, const int ind) { return (mask >> ind) & 1_u64; } template<typename F> struct Fix : F { Fix(F&& f) : F{std::forward<F>(f)} {} template<typename... Args> auto operator()(Args&&... args) const { return F::operator()(*this, std::forward<Args>(args)...); } }; class irange { private: struct itr { itr(i64 start = 0, i64 step = 1) : m_cnt{start}, m_step{step} {} bool operator!=(const itr& it) const { return m_cnt != it.m_cnt; } int operator*() { return m_cnt; } itr& operator++() { m_cnt += m_step; return *this; } i64 m_cnt, m_step; }; i64 m_start, m_end, m_step; public: irange(i64 start, i64 end, i64 step = 1) { assert(step != 0); const i64 d = std::abs(step); const i64 l = (step > 0 ? start : end); const i64 r = (step > 0 ? end : start); int n = (r - l) / d + ((r - l) % d ? 1 : 0); if (l >= r) { n = 0; } m_start = start; m_end = start + step * n; m_step = step; } itr begin() const { return itr{m_start, m_step}; } itr end() const { return itr{m_end, m_step}; } }; irange rep(int end) { return irange(0, end, 1); } irange per(int rend) { return irange(rend - 1, -1, -1); } #pragma COMMENT("[REFS] Xoshiro: https://prng.di.unimi.it") namespace xoshiro_impl { u64 x; u64 next() { uint64_t z = (x += 0x9e3779b97f4a7c15); z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9; z = (z ^ (z >> 27)) * 0x94d049bb133111eb; return z ^ (z >> 31); } } class Xoshiro32 { public: using result_type = u32; using T = result_type; Xoshiro32(T seed = 0) { xoshiro_impl::x = seed; s[0] = xoshiro_impl::next(); s[1] = xoshiro_impl::next(); s[2] = xoshiro_impl::next(); s[3] = xoshiro_impl::next(); } static constexpr T min() { return LIMMIN<T>; } static constexpr T max() { return LIMMAX<T>; } T operator()() { return next(); } private: static constexpr T rotl(const T x, int k) { return (x << k) | (x >> (32 - k)); } T next() { const T ans = rotl(s[1] * 5, 7) * 9; const T t = s[1] << 9; s[2] ^= s[0]; s[3] ^= s[1]; s[1] ^= s[2]; s[0] ^= s[3]; s[2] ^= t; s[3] = rotl(s[3], 11); return ans; } T s[4]; }; class Xoshiro64 { public: using result_type = u64; using T = result_type; Xoshiro64(T seed = 0) { xoshiro_impl::x = seed; s[0] = xoshiro_impl::next(); s[1] = xoshiro_impl::next(); s[2] = xoshiro_impl::next(); s[3] = xoshiro_impl::next(); } static constexpr T min() { return LIMMIN<T>; } static constexpr T max() { return LIMMAX<T>; } T operator()() { return next(); } private: static constexpr T rotl(const T x, int k) { return (x << k) | (x >> (64 - k)); } T next() { const T ans = rotl(s[1] * 5, 7) * 9; const T t = s[1] << 17; s[2] ^= s[0]; s[3] ^= s[1]; s[1] ^= s[2]; s[0] ^= s[3]; s[2] ^= t; s[3] = rotl(s[3], 45); return ans; } T s[4]; }; template<typename Rng> class RNG { public: using result_type = typename Rng::result_type; using T = result_type; static constexpr T min() { return Rng::min(); } static constexpr T max() { return Rng::max(); } RNG() : RNG(std::random_device{}()) {} RNG(T seed) : m_rng(seed) {} T operator()() { return m_rng(); } template<typename T> T val(T min, T max) { return std::uniform_int_distribution<T>(min, max)(m_rng); } template<typename T> Pair<T, T> pair(T min, T max) { return std::minmax({val<T>(min, max), val<T>(min, max)}); } template<typename T> Vec<T> vec(int n, T min, T max) { return genVec<T>(n, [&]() { return val<T>(min, max); }); } template<typename T> Vec<Vec<T>> vvec(int n, int m, T min, T max) { return genVec<Vec<T>>(n, [&]() { return vec(m, min, max); }); } private: Rng m_rng; }; RNG<std::mt19937> rng; RNG<std::mt19937_64> rng64; RNG<Xoshiro32> rng_xo; RNG<Xoshiro64> rng_xo64; class Scanner { public: Scanner(Istream& is = std::cin) : m_is{is} { m_is.tie(nullptr)->sync_with_stdio(false); } template<typename T> T val() { T v; return m_is >> v, v; } template<typename T> T val(T offset) { return val<T>() - offset; } template<typename T> Vec<T> vec(int n) { return genVec<T>(n, [&]() { return val<T>(); }); } template<typename T> Vec<T> vec(int n, T offset) { return genVec<T>(n, [&]() { return val<T>(offset); }); } template<typename T> Vec<Vec<T>> vvec(int n, int m) { return genVec<Vec<T>>(n, [&]() { return vec<T>(m); }); } template<typename T> Vec<Vec<T>> vvec(int n, int m, const T offset) { return genVec<Vec<T>>(n, [&]() { return vec<T>(m, offset); }); } template<typename... Args> auto tup() { return Tup<Args...>{val<Args>()...}; } template<typename... Args> auto tup(const Args&... offsets) { return Tup<Args...>{val<Args>(offsets)...}; } private: Istream& m_is; }; Scanner in; class Printer { public: Printer(Ostream& os = std::cout) : m_os{os} { m_os << std::fixed << std::setprecision(15); } template<typename... Args> int operator()(const Args&... args) { dump(args...); return 0; } template<typename... Args> int ln(const Args&... args) { dump(args...), m_os << '\n'; return 0; } template<typename... Args> int el(const Args&... args) { dump(args...), m_os << std::endl; return 0; } private: template<typename T> void dump(const T& v) { m_os << v; } template<typename T> void dump(const Vec<T>& vs) { for (const int i : rep(vs.size())) { m_os << (i ? " " : ""), dump(vs[i]); } } template<typename T> void dump(const Vec<Vec<T>>& vss) { for (const int i : rep(vss.size())) { m_os << (i ? "\n" : ""), dump(vss[i]); } } template<typename T, typename... Ts> int dump(const T& v, const Ts&... args) { dump(v), m_os << ' ', dump(args...); return 0; } Ostream& m_os; }; Printer out; template<typename T, int n, int i = 0> auto ndVec(int const (&szs)[n], const T x = T{}) { if constexpr (i == n) { return x; } else { return std::vector(szs[i], ndVec<T, n, i + 1>(szs, x)); } } template<typename T, typename F> T binSearch(T ng, T ok, F check) { while (std::abs(ok - ng) > 1) { const T mid = (ok + ng) / 2; (check(mid) ? ok : ng) = mid; } return ok; } template<u32 mod_, u32 root_, u32 max2p_> class modint { template<typename U = u32&> static U modRef() { static u32 s_mod = 0; return s_mod; } template<typename U = u32&> static U rootRef() { static u32 s_root = 0; return s_root; } template<typename U = u32&> static U max2pRef() { static u32 s_max2p = 0; return s_max2p; } public: template<typename U = const u32> static constexpr std::enable_if_t<mod_ != 0, U> mod() { return mod_; } template<typename U = const u32> static std::enable_if_t<mod_ == 0, U> mod() { return modRef(); } template<typename U = const u32> static constexpr std::enable_if_t<mod_ != 0, U> root() { return root_; } template<typename U = const u32> static std::enable_if_t<mod_ == 0, U> root() { return rootRef(); } template<typename U = const u32> static constexpr std::enable_if_t<mod_ != 0, U> max2p() { return max2p_; } template<typename U = const u32> static std::enable_if_t<mod_ == 0, U> max2p() { return max2pRef(); } template<typename U = u32> static void setMod(std::enable_if_t<mod_ == 0, U> m) { modRef() = m; } template<typename U = u32> static void setRoot(std::enable_if_t<mod_ == 0, U> r) { rootRef() = r; } template<typename U = u32> static void setMax2p(std::enable_if_t<mod_ == 0, U> m) { max2pRef() = m; } constexpr modint() : m_val{0} {} constexpr modint(i64 v) : m_val{normll(v)} {} constexpr void setRaw(u32 v) { m_val = v; } constexpr modint operator-() const { return modint{0} - (*this); } constexpr modint& operator+=(const modint& m) { m_val = norm(m_val + m.val()); return *this; } constexpr modint& operator-=(const modint& m) { m_val = norm(m_val + mod() - m.val()); return *this; } constexpr modint& operator*=(const modint& m) { m_val = normll((i64)m_val * (i64)m.val() % (i64)mod()); return *this; } constexpr modint& operator/=(const modint& m) { return *this *= m.inv(); } constexpr modint operator+(const modint& m) const { auto v = *this; return v += m; } constexpr modint operator-(const modint& m) const { auto v = *this; return v -= m; } constexpr modint operator*(const modint& m) const { auto v = *this; return v *= m; } constexpr modint operator/(const modint& m) const { auto v = *this; return v /= m; } constexpr bool operator==(const modint& m) const { return m_val == m.val(); } constexpr bool operator!=(const modint& m) const { return not(*this == m); } friend Istream& operator>>(Istream& is, modint& m) { i64 v; return is >> v, m = v, is; } friend Ostream& operator<<(Ostream& os, const modint& m) { return os << m.val(); } constexpr u32 val() const { return m_val; } template<typename I> constexpr modint pow(I n) const { return power(*this, n); } constexpr modint inv() const { return pow(mod() - 2); } static modint sinv(u32 n) { static Vec<modint> is{1, 1}; for (u32 i = (u32)is.size(); i <= n; i++) { is.push_back(-is[mod() % i] * (mod() / i)); } return is[n]; } static modint fact(u32 n) { static Vec<modint> fs{1, 1}; for (u32 i = (u32)fs.size(); i <= n; i++) { fs.push_back(fs.back() * i); } return fs[n]; } static modint ifact(u32 n) { static Vec<modint> ifs{1, 1}; for (u32 i = (u32)ifs.size(); i <= n; i++) { ifs.push_back(ifs.back() * sinv(i)); } return ifs[n]; } static modint comb(int n, int k) { return k > n or k < 0 ? modint{0} : fact(n) * ifact(n - k) * ifact(k); } private: static constexpr u32 norm(u32 x) { return x < mod() ? x : x - mod(); } static constexpr u32 normll(i64 x) { return norm(u32(x % (i64)mod() + (i64)mod())); } u32 m_val; }; using modint_1000000007 = modint<1000000007, 5, 1>; using modint_998244353 = modint<998244353, 3, 23>; template<int id> using modint_dynamic = modint<0, 0, id>; template<typename T = int> class Graph { struct Edge { Edge() = default; Edge(int i, int t, T c) : id{i}, to{t}, cost{c} {} int id; int to; T cost; operator int() const { return to; } }; public: Graph(int n) : m_v{n}, m_edges(n) {} void addEdge(int u, int v, bool bi = false) { assert(0 <= u and u < m_v); assert(0 <= v and v < m_v); m_edges[u].emplace_back(m_e, v, 1); if (bi) { m_edges[v].emplace_back(m_e, u, 1); } m_e++; } void addEdge(int u, int v, const T& c, bool bi = false) { assert(0 <= u and u < m_v); assert(0 <= v and v < m_v); m_edges[u].emplace_back(m_e, v, c); if (bi) { m_edges[v].emplace_back(m_e, u, c); } m_e++; } const Vec<Edge>& operator[](const int u) const { assert(0 <= u and u < m_v); return m_edges[u]; } Vec<Edge>& operator[](const int u) { assert(0 <= u and u < m_v); return m_edges[u]; } int v() const { return m_v; } int e() const { return m_e; } friend Ostream& operator<<(Ostream& os, const Graph& g) { for (int u : rep(g.v())) { for (const auto& [id, v, c] : g[u]) { os << "[" << id << "]: "; os << u << "->" << v << "(" << c << ")\n"; } } return os; } Vec<T> sizes(int root = 0) const { const int N = v(); assert(0 <= root and root < N); Vec<T> ss(N, 1); Fix([&](auto dfs, int u, int p) -> void { for (const auto& [id, v, c] : m_edges[u]) { static_cast<void>(id); if (v == p) { continue; } dfs(v, u); ss[u] += ss[v]; } })(root, -1); return ss; } Vec<T> depths(int root = 0) const { const int N = v(); assert(0 <= root and root < N); Vec<T> ds(N, 0); Fix([&](auto dfs, int u, int p) -> void { for (const auto& [id, v, c] : m_edges[u]) { static_cast<void>(id); if (v == p) { continue; } ds[v] = ds[u] + c; dfs(v, u); } })(root, -1); return ds; } Vec<int> parents(int root = 0) const { const int N = v(); assert(0 <= root and root < N); Vec<int> ps(N, -1); Fix([&](auto dfs, int u, int p) -> void { for (const auto& [id, v, c] : m_edges[u]) { static_cast<void>(id); if (v == p) { continue; } ps[v] = u; dfs(v, u); } })(root, -1); return ps; } private: int m_v; int m_e = 0; Vec<Vec<Edge>> m_edges; }; #pragma endregion template<class Digraph, typename V = int, typename C = V> class NetworkSimplex { public: using Node = int; using Arc = int; static const int INVALID = -1; typedef V Value; typedef C Cost; public: enum ProblemType { INFEASIBLE, OPTIMAL, UNBOUNDED }; enum SupplyType { GEQ, LEQ }; enum PivotRule { FIRST_ELIGIBLE, BEST_ELIGIBLE, BLOCK_SEARCH, CANDIDATE_LIST, ALTERING_LIST }; private: using IntVector = std::vector<int>; using ValueVector = std::vector<Value>; using CostVector = std::vector<Cost>; using CharVector = std::vector<signed char>; enum ArcState { STATE_UPPER = -1, STATE_TREE = 0, STATE_LOWER = 1 }; enum ArcDirection { DIR_DOWN = -1, DIR_UP = 1 }; private: const Digraph& _graph; int _node_num; int _arc_num; int _all_arc_num; int _search_arc_num; bool _has_lower; SupplyType _stype; Value _sum_supply; IntVector _source; IntVector _target; ValueVector _lower; ValueVector _upper; ValueVector _cap; CostVector _cost; ValueVector _supply; ValueVector _flow; CostVector _pi; IntVector _parent; IntVector _pred; IntVector _thread; IntVector _rev_thread; IntVector _succ_num; IntVector _last_succ; CharVector _pred_dir; CharVector _state; IntVector _dirty_revs; int _root; int in_arc, join, u_in, v_in, u_out, v_out; Value delta; const Value MAX; public: const Value INF; private: class FirstEligiblePivotRule { private: const IntVector& _source; const IntVector& _target; const CostVector& _cost; const CharVector& _state; const CostVector& _pi; int& _in_arc; int _search_arc_num; int _next_arc; public: FirstEligiblePivotRule(NetworkSimplex& ns) : _source(ns._source), _target(ns._target), _cost(ns._cost), _state(ns._state), _pi(ns._pi), _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), _next_arc(0) {} bool findEnteringArc() { Cost c; for (int e = _next_arc; e != _search_arc_num; ++e) { c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); if (c < 0) { _in_arc = e; _next_arc = e + 1; return true; } } for (int e = 0; e != _next_arc; ++e) { c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); if (c < 0) { _in_arc = e; _next_arc = e + 1; return true; } } return false; } }; class BestEligiblePivotRule { private: const IntVector& _source; const IntVector& _target; const CostVector& _cost; const CharVector& _state; const CostVector& _pi; int& _in_arc; int _search_arc_num; public: BestEligiblePivotRule(NetworkSimplex& ns) : _source(ns._source), _target(ns._target), _cost(ns._cost), _state(ns._state), _pi(ns._pi), _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num) {} bool findEnteringArc() { Cost c, min = 0; for (int e = 0; e != _search_arc_num; ++e) { c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); if (c < min) { min = c; _in_arc = e; } } return min < 0; } }; class BlockSearchPivotRule { private: const IntVector& _source; const IntVector& _target; const CostVector& _cost; const CharVector& _state; const CostVector& _pi; int& _in_arc; int _search_arc_num; int _block_size; int _next_arc; public: BlockSearchPivotRule(NetworkSimplex& ns) : _source(ns._source), _target(ns._target), _cost(ns._cost), _state(ns._state), _pi(ns._pi), _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), _next_arc(0) { const double BLOCK_SIZE_FACTOR = 1.0; const int MIN_BLOCK_SIZE = 10; _block_size = std::max( int(BLOCK_SIZE_FACTOR * std::sqrt(double(_search_arc_num))), MIN_BLOCK_SIZE); } bool findEnteringArc() { Cost c, min = 0; int cnt = _block_size; int e; for (e = _next_arc; e != _search_arc_num; ++e) { c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); if (c < min) { min = c; _in_arc = e; } if (--cnt == 0) { if (min < 0) goto search_end; cnt = _block_size; } } for (e = 0; e != _next_arc; ++e) { c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); if (c < min) { min = c; _in_arc = e; } if (--cnt == 0) { if (min < 0) goto search_end; cnt = _block_size; } } if (min >= 0) return false; search_end: _next_arc = e; return true; } }; class CandidateListPivotRule { private: const IntVector& _source; const IntVector& _target; const CostVector& _cost; const CharVector& _state; const CostVector& _pi; int& _in_arc; int _search_arc_num; IntVector _candidates; int _list_length, _minor_limit; int _curr_length, _minor_count; int _next_arc; public: CandidateListPivotRule(NetworkSimplex& ns) : _source(ns._source), _target(ns._target), _cost(ns._cost), _state(ns._state), _pi(ns._pi), _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), _next_arc(0) { const double LIST_LENGTH_FACTOR = 0.25; const int MIN_LIST_LENGTH = 10; const double MINOR_LIMIT_FACTOR = 0.1; const int MIN_MINOR_LIMIT = 3; _list_length = std::max( int(LIST_LENGTH_FACTOR * std::sqrt(double(_search_arc_num))), MIN_LIST_LENGTH); _minor_limit = std::max(int(MINOR_LIMIT_FACTOR * _list_length), MIN_MINOR_LIMIT); _curr_length = _minor_count = 0; _candidates.resize(_list_length); } bool findEnteringArc() { Cost min, c; int e; if (_curr_length > 0 && _minor_count < _minor_limit) { ++_minor_count; min = 0; for (int i = 0; i < _curr_length; ++i) { e = _candidates[i]; c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); if (c < min) { min = c; _in_arc = e; } else if (c >= 0) { _candidates[i--] = _candidates[--_curr_length]; } } if (min < 0) return true; } min = 0; _curr_length = 0; for (e = _next_arc; e != _search_arc_num; ++e) { c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); if (c < 0) { _candidates[_curr_length++] = e; if (c < min) { min = c; _in_arc = e; } if (_curr_length == _list_length) goto search_end; } } for (e = 0; e != _next_arc; ++e) { c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); if (c < 0) { _candidates[_curr_length++] = e; if (c < min) { min = c; _in_arc = e; } if (_curr_length == _list_length) goto search_end; } } if (_curr_length == 0) return false; search_end: _minor_count = 1; _next_arc = e; return true; } }; class AlteringListPivotRule { private: const IntVector& _source; const IntVector& _target; const CostVector& _cost; const CharVector& _state; const CostVector& _pi; int& _in_arc; int _search_arc_num; int _block_size, _head_length, _curr_length; int _next_arc; IntVector _candidates; CostVector _cand_cost; class SortFunc { private: const CostVector& _map; public: SortFunc(const CostVector& map) : _map(map) {} bool operator()(int left, int right) { return _map[left] < _map[right]; } }; SortFunc _sort_func; public: AlteringListPivotRule(NetworkSimplex& ns) : _source(ns._source), _target(ns._target), _cost(ns._cost), _state(ns._state), _pi(ns._pi), _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), _next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost) { const double BLOCK_SIZE_FACTOR = 1.0; const int MIN_BLOCK_SIZE = 10; const double HEAD_LENGTH_FACTOR = 0.01; const int MIN_HEAD_LENGTH = 3; _block_size = std::max( int(BLOCK_SIZE_FACTOR * std::sqrt(double(_search_arc_num))), MIN_BLOCK_SIZE); _head_length = std::max(int(HEAD_LENGTH_FACTOR * _block_size), MIN_HEAD_LENGTH); _candidates.resize(_head_length + _block_size); _curr_length = 0; } bool findEnteringArc() { int e; Cost c; for (int i = 0; i != _curr_length; ++i) { e = _candidates[i]; c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); if (c < 0) { _cand_cost[e] = c; } else { _candidates[i--] = _candidates[--_curr_length]; } } int cnt = _block_size; int limit = _head_length; for (e = _next_arc; e != _search_arc_num; ++e) { c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); if (c < 0) { _cand_cost[e] = c; _candidates[_curr_length++] = e; } if (--cnt == 0) { if (_curr_length > limit) goto search_end; limit = 0; cnt = _block_size; } } for (e = 0; e != _next_arc; ++e) { c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); if (c < 0) { _cand_cost[e] = c; _candidates[_curr_length++] = e; } if (--cnt == 0) { if (_curr_length > limit) goto search_end; limit = 0; cnt = _block_size; } } if (_curr_length == 0) return false; search_end: int new_length = std::min(_head_length + 1, _curr_length); std::partial_sort(_candidates.begin(), _candidates.begin() + new_length, _candidates.begin() + _curr_length, _sort_func); _in_arc = _candidates[0]; _next_arc = e; _candidates[0] = _candidates[new_length - 1]; _curr_length = new_length - 1; return true; } }; public: NetworkSimplex(const Digraph& graph) : _graph(graph), MAX(std::numeric_limits<Value>::max()), INF(std::numeric_limits<Value>::has_infinity ? std::numeric_limits<Value>::infinity() : MAX) { static_assert(std::numeric_limits<Value>::is_signed, "Value must be signed"); static_assert(std::numeric_limits<Cost>::is_signed, "Cost must be signed"); static_assert(std::numeric_limits<Value>::max() > 0, "max() must be greater than 0"); reset(); } template<typename LowerMap> NetworkSimplex& lowerMap(const LowerMap& map) { _has_lower = true; for (Arc a = 0; a < _arc_num; a++) _lower[a] = map[a]; return *this; } template<typename UpperMap> NetworkSimplex& upperMap(const UpperMap& map) { for (Arc a = 0; a < _arc_num; a++) _upper[a] = map[a]; return *this; } template<typename CostMap> NetworkSimplex& costMap(const CostMap& map) { for (Arc a = 0; a < _arc_num; a++) _cost[a] = map[a]; return *this; } template<typename SupplyMap> NetworkSimplex& supplyMap(const SupplyMap& map) { for (Node n = 0; n < _node_num; n++) _supply[n] = map[n]; return *this; } NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) { for (int i = 0; i != _node_num; ++i) _supply[i] = 0; _supply[s] = k, _supply[t] = -k; return *this; } NetworkSimplex& supplyType(SupplyType supply_type) { _stype = supply_type; return *this; } ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) { if (!init()) return INFEASIBLE; return start(pivot_rule); } NetworkSimplex& resetParams() { for (int i = 0; i != _node_num; ++i) { _supply[i] = 0; } for (int i = 0; i != _arc_num; ++i) { _lower[i] = 0; _upper[i] = INF; _cost[i] = 1; } _has_lower = false; _stype = GEQ; return *this; } NetworkSimplex& reset() { _node_num = _graph.countNodes(); _arc_num = _graph.countArcs(); int all_node_num = _node_num + 1; int max_arc_num = _arc_num + 2 * _node_num; _source.resize(max_arc_num); _target.resize(max_arc_num); _lower.resize(_arc_num); _upper.resize(_arc_num); _cap.resize(max_arc_num); _cost.resize(max_arc_num); _supply.resize(all_node_num); _flow.resize(max_arc_num); _pi.resize(all_node_num); _parent.resize(all_node_num); _pred.resize(all_node_num); _pred_dir.resize(all_node_num); _thread.resize(all_node_num); _rev_thread.resize(all_node_num); _succ_num.resize(all_node_num); _last_succ.resize(all_node_num); _state.resize(max_arc_num); for (int a = 0; a < _arc_num; ++a) { _source[a] = _graph.source(a); _target[a] = _graph.target(a); } resetParams(); return *this; } template<typename Number = Cost> Number totalCost() const { Number c = 0; for (Arc a = 0; a < _arc_num; a++) c += Number(_flow[a]) * Number(_cost[a]); return c; } Value flow(const Arc& a) const { return _flow[a]; } template<typename FlowMap> void flowMap(FlowMap& map) const { for (Arc a = 0; a < _arc_num; a++) { map.set(a, _flow[a]); } } ValueVector flowMap() const { return _flow; } Cost potential(const Node& n) const { return _pi[n]; } template<typename PotentialMap> void potentialMap(PotentialMap& map) const { for (int n = 0; n < _graph.V; n++) { map.set(n, _pi[n]); } } CostVector potentialMap() const { return _pi; } private: bool init() { if (_node_num == 0) return false; _sum_supply = 0; for (int i = 0; i != _node_num; ++i) { _sum_supply += _supply[i]; } if (!((_stype == GEQ && _sum_supply <= 0) || (_stype == LEQ && _sum_supply >= 0))) return false; if (_has_lower) { for (int i = 0; i != _arc_num; ++i) { Value c = _lower[i]; if (c >= 0) { _cap[i] = _upper[i] < MAX ? _upper[i] - c : INF; } else { _cap[i] = _upper[i] < MAX + c ? _upper[i] - c : INF; } _supply[_source[i]] -= c; _supply[_target[i]] += c; } } else { for (int i = 0; i != _arc_num; ++i) { _cap[i] = _upper[i]; } } Cost ART_COST; if (std::numeric_limits<Cost>::is_exact) { ART_COST = std::numeric_limits<Cost>::max() / 2 + 1; } else { ART_COST = 0; for (int i = 0; i != _arc_num; ++i) { if (_cost[i] > ART_COST) ART_COST = _cost[i]; } ART_COST = (ART_COST + 1) * _node_num; } for (int i = 0; i != _arc_num; ++i) { _flow[i] = 0; _state[i] = STATE_LOWER; } _root = _node_num; _parent[_root] = -1; _pred[_root] = -1; _thread[_root] = 0; _rev_thread[0] = _root; _succ_num[_root] = _node_num + 1; _last_succ[_root] = _root - 1; _supply[_root] = -_sum_supply; _pi[_root] = 0; if (_sum_supply == 0) { _search_arc_num = _arc_num; _all_arc_num = _arc_num + _node_num; for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { _parent[u] = _root; _pred[u] = e; _thread[u] = u + 1; _rev_thread[u + 1] = u; _succ_num[u] = 1; _last_succ[u] = u; _cap[e] = INF; _state[e] = STATE_TREE; if (_supply[u] >= 0) { _pred_dir[u] = DIR_UP; _pi[u] = 0; _source[e] = u; _target[e] = _root; _flow[e] = _supply[u]; _cost[e] = 0; } else { _pred_dir[u] = DIR_DOWN; _pi[u] = ART_COST; _source[e] = _root; _target[e] = u; _flow[e] = -_supply[u]; _cost[e] = ART_COST; } } } else if (_sum_supply > 0) { _search_arc_num = _arc_num + _node_num; int f = _arc_num + _node_num; for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { _parent[u] = _root; _thread[u] = u + 1; _rev_thread[u + 1] = u; _succ_num[u] = 1; _last_succ[u] = u; if (_supply[u] >= 0) { _pred_dir[u] = DIR_UP; _pi[u] = 0; _pred[u] = e; _source[e] = u; _target[e] = _root; _cap[e] = INF; _flow[e] = _supply[u]; _cost[e] = 0; _state[e] = STATE_TREE; } else { _pred_dir[u] = DIR_DOWN; _pi[u] = ART_COST; _pred[u] = f; _source[f] = _root; _target[f] = u; _cap[f] = INF; _flow[f] = -_supply[u]; _cost[f] = ART_COST; _state[f] = STATE_TREE; _source[e] = u; _target[e] = _root; _cap[e] = INF; _flow[e] = 0; _cost[e] = 0; _state[e] = STATE_LOWER; ++f; } } _all_arc_num = f; } else { _search_arc_num = _arc_num + _node_num; int f = _arc_num + _node_num; for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { _parent[u] = _root; _thread[u] = u + 1; _rev_thread[u + 1] = u; _succ_num[u] = 1; _last_succ[u] = u; if (_supply[u] <= 0) { _pred_dir[u] = DIR_DOWN; _pi[u] = 0; _pred[u] = e; _source[e] = _root; _target[e] = u; _cap[e] = INF; _flow[e] = -_supply[u]; _cost[e] = 0; _state[e] = STATE_TREE; } else { _pred_dir[u] = DIR_UP; _pi[u] = -ART_COST; _pred[u] = f; _source[f] = u; _target[f] = _root; _cap[f] = INF; _flow[f] = _supply[u]; _state[f] = STATE_TREE; _cost[f] = ART_COST; _source[e] = _root; _target[e] = u; _cap[e] = INF; _flow[e] = 0; _cost[e] = 0; _state[e] = STATE_LOWER; ++f; } } _all_arc_num = f; } return true; } bool checkBoundMaps() { for (int j = 0; j != _arc_num; ++j) { if (_upper[j] < _lower[j]) return false; } return true; } void findJoinNode() { int u = _source[in_arc]; int v = _target[in_arc]; while (u != v) { if (_succ_num[u] < _succ_num[v]) { u = _parent[u]; } else { v = _parent[v]; } } join = u; } bool findLeavingArc() { int first, second; if (_state[in_arc] == STATE_LOWER) { first = _source[in_arc]; second = _target[in_arc]; } else { first = _target[in_arc]; second = _source[in_arc]; } delta = _cap[in_arc]; int result = 0; Value c, d; int e; for (int u = first; u != join; u = _parent[u]) { e = _pred[u]; d = _flow[e]; if (_pred_dir[u] == DIR_DOWN) { c = _cap[e]; d = c >= MAX ? INF : c - d; } if (d < delta) { delta = d; u_out = u; result = 1; } } for (int u = second; u != join; u = _parent[u]) { e = _pred[u]; d = _flow[e]; if (_pred_dir[u] == DIR_UP) { c = _cap[e]; d = c >= MAX ? INF : c - d; } if (d <= delta) { delta = d; u_out = u; result = 2; } } if (result == 1) { u_in = first; v_in = second; } else { u_in = second; v_in = first; } return result != 0; } void changeFlow(bool change) { if (delta > 0) { Value val = _state[in_arc] * delta; _flow[in_arc] += val; for (int u = _source[in_arc]; u != join; u = _parent[u]) { _flow[_pred[u]] -= _pred_dir[u] * val; } for (int u = _target[in_arc]; u != join; u = _parent[u]) { _flow[_pred[u]] += _pred_dir[u] * val; } } if (change) { _state[in_arc] = STATE_TREE; _state[_pred[u_out]] = (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; } else { _state[in_arc] = -_state[in_arc]; } } void updateTreeStructure() { int old_rev_thread = _rev_thread[u_out]; int old_succ_num = _succ_num[u_out]; int old_last_succ = _last_succ[u_out]; v_out = _parent[u_out]; if (u_in == u_out) { _parent[u_in] = v_in; _pred[u_in] = in_arc; _pred_dir[u_in] = u_in == _source[in_arc] ? DIR_UP : DIR_DOWN; if (_thread[v_in] != u_out) { int after = _thread[old_last_succ]; _thread[old_rev_thread] = after; _rev_thread[after] = old_rev_thread; after = _thread[v_in]; _thread[v_in] = u_out; _rev_thread[u_out] = v_in; _thread[old_last_succ] = after; _rev_thread[after] = old_last_succ; } } else { int thread_continue = old_rev_thread == v_in ? _thread[old_last_succ] : _thread[v_in]; int stem = u_in; int par_stem = v_in; int next_stem; int last = _last_succ[u_in]; int before, after = _thread[last]; _thread[v_in] = u_in; _dirty_revs.clear(); _dirty_revs.push_back(v_in); while (stem != u_out) { next_stem = _parent[stem]; _thread[last] = next_stem; _dirty_revs.push_back(last); before = _rev_thread[stem]; _thread[before] = after; _rev_thread[after] = before; _parent[stem] = par_stem; par_stem = stem; stem = next_stem; last = _last_succ[stem] == _last_succ[par_stem] ? _rev_thread[par_stem] : _last_succ[stem]; after = _thread[last]; } _parent[u_out] = par_stem; _thread[last] = thread_continue; _rev_thread[thread_continue] = last; _last_succ[u_out] = last; if (old_rev_thread != v_in) { _thread[old_rev_thread] = after; _rev_thread[after] = old_rev_thread; } for (int i = 0; i != int(_dirty_revs.size()); ++i) { int u = _dirty_revs[i]; _rev_thread[_thread[u]] = u; } int tmp_sc = 0, tmp_ls = _last_succ[u_out]; for (int u = u_out, p = _parent[u]; u != u_in; u = p, p = _parent[u]) { _pred[u] = _pred[p]; _pred_dir[u] = -_pred_dir[p]; tmp_sc += _succ_num[u] - _succ_num[p]; _succ_num[u] = tmp_sc; _last_succ[p] = tmp_ls; } _pred[u_in] = in_arc; _pred_dir[u_in] = u_in == _source[in_arc] ? DIR_UP : DIR_DOWN; _succ_num[u_in] = old_succ_num; } int up_limit_out = _last_succ[join] == v_in ? join : -1; int last_succ_out = _last_succ[u_out]; for (int u = v_in; u != -1 && _last_succ[u] == v_in; u = _parent[u]) { _last_succ[u] = last_succ_out; } if (join != old_rev_thread && v_in != old_rev_thread) { for (int u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; u = _parent[u]) { _last_succ[u] = old_rev_thread; } } else if (last_succ_out != old_last_succ) { for (int u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; u = _parent[u]) { _last_succ[u] = last_succ_out; } } for (int u = v_in; u != join; u = _parent[u]) { _succ_num[u] += old_succ_num; } for (int u = v_out; u != join; u = _parent[u]) { _succ_num[u] -= old_succ_num; } } void updatePotential() { Cost sigma = _pi[v_in] - _pi[u_in] - _pred_dir[u_in] * _cost[in_arc]; int end = _thread[_last_succ[u_in]]; for (int u = u_in; u != end; u = _thread[u]) { _pi[u] += sigma; } } bool initialPivots() { Value curr, total = 0; std::vector<Node> supply_nodes, demand_nodes; for (int u = 0; u < _node_num; ++u) { curr = _supply[u]; if (curr > 0) { total += curr; supply_nodes.push_back(u); } else if (curr < 0) { demand_nodes.push_back(u); } } if (_sum_supply > 0) total -= _sum_supply; if (total <= 0) return true; IntVector arc_vector; if (_sum_supply >= 0) { if (supply_nodes.size() == 1 && demand_nodes.size() == 1) { std::vector<char> reached(_node_num, false); Node s = supply_nodes[0], t = demand_nodes[0]; std::vector<Node> stack; reached[t] = true; stack.push_back(t); while (!stack.empty()) { Node u, v = stack.back(); stack.pop_back(); if (v == s) break; for (auto a : _graph.in_eids[v]) { if (reached[u = _graph.source(a)]) continue; int j = a; if (_cap[j] >= total) { arc_vector.push_back(j); reached[u] = true; stack.push_back(u); } } } } else { for (int i = 0; i != int(demand_nodes.size()); ++i) { Node v = demand_nodes[i]; Cost c, min_cost = std::numeric_limits<Cost>::max(); Arc min_arc = INVALID; for (auto a : _graph.in_eids[v]) { c = _cost[a]; if (c < min_cost) { min_cost = c; min_arc = a; } } if (min_arc != INVALID) { arc_vector.push_back(min_arc); } } } } else { for (Node u : supply_nodes) { Cost c, min_cost = std::numeric_limits<Cost>::max(); Arc min_arc = INVALID; for (auto a : _graph.out_eids[u]) { c = _cost[a]; if (c < min_cost) { min_cost = c; min_arc = a; } } if (min_arc != INVALID) { arc_vector.push_back(min_arc); } } } for (int i = 0; i != int(arc_vector.size()); ++i) { in_arc = arc_vector[i]; if (_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] - _pi[_target[in_arc]]) >= 0) continue; findJoinNode(); bool change = findLeavingArc(); if (delta >= MAX) return false; changeFlow(change); if (change) { updateTreeStructure(); updatePotential(); } } return true; } ProblemType start(PivotRule pivot_rule) { switch (pivot_rule) { case FIRST_ELIGIBLE: return start<FirstEligiblePivotRule>(); case BEST_ELIGIBLE: return start<BestEligiblePivotRule>(); case BLOCK_SEARCH: return start<BlockSearchPivotRule>(); case CANDIDATE_LIST: return start<CandidateListPivotRule>(); case ALTERING_LIST: return start<AlteringListPivotRule>(); } return INFEASIBLE; } template<typename PivotRuleImpl> ProblemType start() { PivotRuleImpl pivot(*this); if (!initialPivots()) return UNBOUNDED; while (pivot.findEnteringArc()) { findJoinNode(); bool change = findLeavingArc(); if (delta >= MAX) return UNBOUNDED; changeFlow(change); if (change) { updateTreeStructure(); updatePotential(); } } for (int e = _search_arc_num; e != _all_arc_num; ++e) { if (_flow[e] != 0) return INFEASIBLE; } if (_has_lower) { for (int i = 0; i != _arc_num; ++i) { Value c = _lower[i]; if (c != 0) { _flow[i] += c; _supply[_source[i]] += c; _supply[_target[i]] -= c; } } } if (_sum_supply == 0) { if (_stype == GEQ) { Cost max_pot = -std::numeric_limits<Cost>::max(); for (int i = 0; i != _node_num; ++i) { if (_pi[i] > max_pot) max_pot = _pi[i]; } if (max_pot > 0) { for (int i = 0; i != _node_num; ++i) _pi[i] -= max_pot; } } else { Cost min_pot = std::numeric_limits<Cost>::max(); for (int i = 0; i != _node_num; ++i) { if (_pi[i] < min_pot) min_pot = _pi[i]; } if (min_pot < 0) { for (int i = 0; i != _node_num; ++i) _pi[i] -= min_pot; } } } return OPTIMAL; } }; template<typename Capacity = long long, typename Weight = long long> struct mcf_graph_ns { struct Digraph { const int V; int E; std::vector<std::vector<int>> in_eids, out_eids; std::vector<std::pair<int, int>> arcs; Digraph(int V = 0) : V(V), E(0), in_eids(V), out_eids(V){}; int add_edge(int s, int t) { assert(0 <= s and s < V); assert(0 <= t and t < V); in_eids[t].push_back(E), out_eids[s].push_back(E), arcs.emplace_back(s, t), E++; return E - 1; } int countNodes() const noexcept { return V; } int countArcs() const noexcept { return E; } int source(int arcid) const { return arcs[arcid].first; } int target(int arcid) const { return arcs[arcid].second; } }; struct edge { int eid; int from, to; Capacity lo, hi; Weight weight; friend Ostream& operator<<(Ostream& os, const edge& e) { return (os << e.from << "->" << e.to << ":" << e.weight); } }; int n; std::vector<Capacity> bs; bool infeasible; std::vector<edge> Edges; mcf_graph_ns(int V = 0) : n(V), bs(V), infeasible(false) {} int add_edge(int from, int to, Capacity lower, Capacity upper, Weight weight) { assert(from >= 0 and from < n); assert(to >= 0 and to < n); int idnow = Edges.size(); Edges.push_back({idnow, from, to, lower, upper, weight}); return idnow; } void set_supply(int v, Capacity b) { assert(v >= 0 and v < n); bs[v] = b; } std::vector<Capacity> flow; std::vector<Capacity> potential; template<typename RetVal = __int128> [[nodiscard]] RetVal solve() { std::mt19937 rng( std::chrono::steady_clock::now().time_since_epoch().count()); std::vector<int> vid(n), eid(Edges.size()); std::iota(vid.begin(), vid.end(), 0); std::shuffle(vid.begin(), vid.end(), rng); std::iota(eid.begin(), eid.end(), 0); std::shuffle(eid.begin(), eid.end(), rng); flow.clear(); potential.clear(); Digraph graph(n + 1); std::vector<Capacity> supplies(graph.countNodes()); std::vector<Capacity> lowers(Edges.size()); std::vector<Capacity> uppers(Edges.size()); std::vector<Weight> weights(Edges.size()); for (int i = 0; i < n; i++) supplies[vid[i]] = bs[i]; for (auto i : eid) { const auto& e = Edges[i]; int arc = graph.add_edge(vid[e.from], vid[e.to]); lowers[arc] = e.lo; uppers[arc] = e.hi; weights[arc] = e.weight; } NetworkSimplex<Digraph, Capacity, Weight> ns(graph); auto status = ns.supplyMap(supplies) .costMap(weights) .lowerMap(lowers) .upperMap(uppers) .run(decltype(ns)::BLOCK_SEARCH); if (status == decltype(ns)::INFEASIBLE) { return infeasible = true, 0; } else { flow.resize(Edges.size()); potential.resize(n); for (int i = 0; i < int(Edges.size()); i++) flow[eid[i]] = ns.flow(i); for (int i = 0; i < n; i++) potential[i] = ns.potential(vid[i]); return ns.template totalCost<RetVal>(); } } }; int main() { const auto [N, M] = in.tup<int, int>(); const auto [X, Y, Z] = in.tup<int, int, int>(1, 1, 1); auto g = ndVec({N, N}, 1); for (int i : rep(N)) { g[i][i] = 0; } for (int i : rep(M)) { const auto [A, B] = in.tup<int, int>(1, 1); g[A][B] = g[B][A] = 0; } auto vin = [&, X = X, Y = Y, Z = Z](int i) { if (i == X) { return 2 * X; } if (i == Y) { return 2 * Y; } return 2 * i; }; auto vout = [&, X = X, Y = Y, Z = Z, N = N](int i) { if (i == X) { return 2 * X; } if (i == Y) { return 2 * Y; } return 2 * i + 1; }; mcf_graph_ns<int, i64> flow(4 * N); for (int i : rep(N)) { if (g[X][i]) { flow.add_edge(vout(X), vin(i), 0, 1, 0); } } for (int i : rep(N)) { if (g[i][Y]) { flow.add_edge(vout(i), vin(Y), 0, 1, 0); flow.add_edge(vout(i) + 2 * N, vin(Y) + 2 * N, 0, 1, 0); } } for (int i : rep(N)) { if (i == X or i == Y) { continue; } if (i == Z) { flow.add_edge(vin(i), vout(i) + 2 * N, 0, 1, 1); } else { flow.add_edge(vin(i), vout(i), 0, 1, 1); flow.add_edge(vin(i) + 2 * N, vout(i) + 2 * N, 0, 1, 1); } } for (int i : rep(N)) { if (i == X or i == Y) { continue; } for (int j : rep(N)) { if (j == X or j == Y) { continue; } if (g[i][j] == 0) { continue; } flow.add_edge(vout(i), vin(j), 0, 1, 0); flow.add_edge(vout(i) + 2 * N, vin(j) + 2 * N, 0, 1, 0); } } flow.set_supply(vin(X), 2); flow.set_supply(vin(Y), -1); flow.set_supply(vin(Y) + 2 * N, -1); i64 ans = flow.solve() + 2; if (flow.infeasible) { out.ln(-1); } else { void(0); void(0); void(0); for (int i : rep(flow.flow.size())) { if (flow.flow[i]) { void(0); } } out.ln(ans); } return 0; }