結果

問題 No.1776 Love Triangle 2 (Hard)
ユーザー hitonanodehitonanode
提出日時 2021-12-05 10:53:04
言語 C++17(clang)
(17.0.6 + boost 1.83.0)
結果
AC  
実行時間 3,784 ms / 10,000 ms
コード長 13,395 bytes
コンパイル時間 5,438 ms
コンパイル使用メモリ 157,720 KB
実行使用メモリ 6,572 KB
最終ジャッジ日時 2024-07-07 07:10:46
合計ジャッジ時間 188,759 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 1 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 30 ms
5,376 KB
testcase_05 AC 30 ms
5,376 KB
testcase_06 AC 29 ms
5,376 KB
testcase_07 AC 26 ms
5,376 KB
testcase_08 AC 28 ms
5,376 KB
testcase_09 AC 224 ms
5,376 KB
testcase_10 AC 375 ms
5,376 KB
testcase_11 AC 464 ms
5,376 KB
testcase_12 AC 313 ms
5,376 KB
testcase_13 AC 458 ms
5,376 KB
testcase_14 AC 501 ms
5,376 KB
testcase_15 AC 564 ms
5,376 KB
testcase_16 AC 674 ms
5,376 KB
testcase_17 AC 531 ms
5,376 KB
testcase_18 AC 653 ms
5,376 KB
testcase_19 AC 161 ms
5,376 KB
testcase_20 AC 336 ms
5,376 KB
testcase_21 AC 533 ms
5,376 KB
testcase_22 AC 386 ms
5,376 KB
testcase_23 AC 487 ms
5,376 KB
testcase_24 AC 427 ms
5,376 KB
testcase_25 AC 362 ms
5,376 KB
testcase_26 AC 458 ms
5,376 KB
testcase_27 AC 407 ms
5,376 KB
testcase_28 AC 359 ms
5,376 KB
testcase_29 AC 761 ms
5,376 KB
testcase_30 AC 577 ms
5,376 KB
testcase_31 AC 549 ms
5,376 KB
testcase_32 AC 513 ms
5,376 KB
testcase_33 AC 400 ms
5,376 KB
testcase_34 AC 392 ms
5,376 KB
testcase_35 AC 289 ms
5,376 KB
testcase_36 AC 312 ms
5,376 KB
testcase_37 AC 212 ms
5,376 KB
testcase_38 AC 83 ms
5,376 KB
testcase_39 AC 609 ms
5,376 KB
testcase_40 AC 786 ms
5,376 KB
testcase_41 AC 615 ms
5,376 KB
testcase_42 AC 564 ms
5,376 KB
testcase_43 AC 570 ms
5,376 KB
testcase_44 AC 497 ms
5,376 KB
testcase_45 AC 420 ms
5,376 KB
testcase_46 AC 390 ms
5,376 KB
testcase_47 AC 438 ms
5,376 KB
testcase_48 AC 354 ms
5,376 KB
testcase_49 AC 666 ms
5,376 KB
testcase_50 AC 632 ms
5,376 KB
testcase_51 AC 649 ms
5,376 KB
testcase_52 AC 635 ms
5,376 KB
testcase_53 AC 573 ms
5,376 KB
testcase_54 AC 481 ms
5,376 KB
testcase_55 AC 492 ms
5,376 KB
testcase_56 AC 655 ms
5,376 KB
testcase_57 AC 516 ms
5,376 KB
testcase_58 AC 247 ms
5,376 KB
testcase_59 AC 648 ms
5,376 KB
testcase_60 AC 920 ms
5,376 KB
testcase_61 AC 667 ms
5,376 KB
testcase_62 AC 650 ms
5,376 KB
testcase_63 AC 605 ms
5,376 KB
testcase_64 AC 559 ms
5,376 KB
testcase_65 AC 393 ms
5,376 KB
testcase_66 AC 437 ms
5,376 KB
testcase_67 AC 490 ms
5,376 KB
testcase_68 AC 220 ms
5,376 KB
testcase_69 AC 90 ms
5,376 KB
testcase_70 AC 88 ms
5,376 KB
testcase_71 AC 89 ms
5,376 KB
testcase_72 AC 58 ms
5,376 KB
testcase_73 AC 85 ms
5,376 KB
testcase_74 AC 1,364 ms
5,376 KB
testcase_75 AC 1,138 ms
5,376 KB
testcase_76 AC 1,536 ms
5,376 KB
testcase_77 AC 1,502 ms
5,376 KB
testcase_78 AC 1,907 ms
5,376 KB
testcase_79 AC 2,147 ms
5,376 KB
testcase_80 AC 1,958 ms
5,376 KB
testcase_81 AC 2,543 ms
5,376 KB
testcase_82 AC 2,052 ms
5,376 KB
testcase_83 AC 2,475 ms
5,760 KB
testcase_84 AC 1,370 ms
5,376 KB
testcase_85 AC 1,798 ms
5,376 KB
testcase_86 AC 1,033 ms
5,376 KB
testcase_87 AC 1,554 ms
5,376 KB
testcase_88 AC 1,976 ms
5,376 KB
testcase_89 AC 1,707 ms
5,376 KB
testcase_90 AC 1,409 ms
5,376 KB
testcase_91 AC 1,768 ms
5,376 KB
testcase_92 AC 1,485 ms
5,376 KB
testcase_93 AC 2,273 ms
5,376 KB
testcase_94 AC 2,921 ms
6,572 KB
testcase_95 AC 2,533 ms
6,188 KB
testcase_96 AC 2,297 ms
5,376 KB
testcase_97 AC 1,975 ms
5,376 KB
testcase_98 AC 1,630 ms
5,376 KB
testcase_99 AC 1,415 ms
5,376 KB
testcase_100 AC 1,316 ms
5,376 KB
testcase_101 AC 944 ms
5,376 KB
testcase_102 AC 795 ms
5,376 KB
testcase_103 AC 279 ms
5,376 KB
testcase_104 AC 2,611 ms
6,316 KB
testcase_105 AC 2,620 ms
5,376 KB
testcase_106 AC 2,603 ms
5,376 KB
testcase_107 AC 2,331 ms
5,376 KB
testcase_108 AC 2,019 ms
5,376 KB
testcase_109 AC 2,096 ms
5,376 KB
testcase_110 AC 1,852 ms
5,376 KB
testcase_111 AC 1,768 ms
5,376 KB
testcase_112 AC 1,377 ms
5,376 KB
testcase_113 AC 1,143 ms
5,376 KB
testcase_114 AC 2,910 ms
6,440 KB
testcase_115 AC 2,667 ms
6,240 KB
testcase_116 AC 2,970 ms
5,376 KB
testcase_117 AC 2,988 ms
5,376 KB
testcase_118 AC 2,110 ms
5,376 KB
testcase_119 AC 1,741 ms
5,376 KB
testcase_120 AC 2,558 ms
5,376 KB
testcase_121 AC 1,996 ms
5,376 KB
testcase_122 AC 1,738 ms
5,376 KB
testcase_123 AC 1,080 ms
5,376 KB
testcase_124 AC 2,631 ms
6,372 KB
testcase_125 AC 2,403 ms
5,376 KB
testcase_126 AC 2,591 ms
5,376 KB
testcase_127 AC 2,495 ms
5,376 KB
testcase_128 AC 2,318 ms
5,376 KB
testcase_129 AC 1,835 ms
5,376 KB
testcase_130 AC 1,964 ms
5,376 KB
testcase_131 AC 1,735 ms
5,376 KB
testcase_132 AC 2,216 ms
5,376 KB
testcase_133 AC 2,411 ms
5,376 KB
testcase_134 AC 196 ms
5,376 KB
testcase_135 AC 187 ms
5,376 KB
testcase_136 AC 142 ms
5,376 KB
testcase_137 AC 126 ms
5,376 KB
testcase_138 AC 96 ms
5,376 KB
testcase_139 AC 98 ms
5,376 KB
testcase_140 AC 105 ms
5,376 KB
testcase_141 AC 117 ms
5,376 KB
testcase_142 AC 99 ms
5,376 KB
testcase_143 AC 114 ms
5,376 KB
testcase_144 AC 300 ms
5,376 KB
testcase_145 AC 322 ms
5,376 KB
testcase_146 AC 438 ms
5,376 KB
testcase_147 AC 506 ms
5,376 KB
testcase_148 AC 673 ms
5,376 KB
testcase_149 AC 464 ms
5,376 KB
testcase_150 AC 467 ms
5,376 KB
testcase_151 AC 636 ms
5,376 KB
testcase_152 AC 573 ms
5,376 KB
testcase_153 AC 592 ms
5,376 KB
testcase_154 AC 138 ms
5,376 KB
testcase_155 AC 484 ms
5,376 KB
testcase_156 AC 382 ms
5,376 KB
testcase_157 AC 497 ms
5,376 KB
testcase_158 AC 497 ms
5,376 KB
testcase_159 AC 503 ms
5,376 KB
testcase_160 AC 623 ms
5,376 KB
testcase_161 AC 794 ms
5,376 KB
testcase_162 AC 416 ms
5,376 KB
testcase_163 AC 308 ms
5,376 KB
testcase_164 AC 343 ms
5,376 KB
testcase_165 AC 1,794 ms
5,376 KB
testcase_166 AC 1,352 ms
5,376 KB
testcase_167 AC 1,838 ms
5,376 KB
testcase_168 AC 1,375 ms
5,376 KB
testcase_169 AC 1,614 ms
5,376 KB
testcase_170 AC 2,616 ms
5,376 KB
testcase_171 AC 3,784 ms
5,376 KB
testcase_172 AC 1,794 ms
5,376 KB
testcase_173 AC 2,118 ms
5,376 KB
testcase_174 AC 2,622 ms
5,376 KB
testcase_175 AC 426 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// O(n^4 log n) weighted-linear-matroid-parity-based solution
#include <algorithm>
#include <cassert>
#include <iostream>
#include <random>
#include <utility>
#include <vector>
using namespace std;

#include <atcoder/mincostflow>
#include <atcoder/modint>
using mint = atcoder::static_modint<(1 << 30) + 3>;

mt19937 mt(530629);
uniform_int_distribution<int> rndgen(0, mint::mod());

// Upper Hessenberg reduction of square matrices
// Complexity: O(n^3)
// Reference:
// http://www.phys.uri.edu/nigh/NumRec/bookfpdf/f11-5.pdf
template <class Tp> void hessenberg_reduction(std::vector<std::vector<Tp>> &M) {
    assert(M.size() == M[0].size());
    const int N = M.size();
    for (int r = 0; r < N - 2; r++) {
        int piv = -1;
        for (int j = r + 1; j < N; ++j) if (M[j][r] != 0) {
            piv = j;
            break;
        }
        if (piv < 0) continue;
        for (int i = 0; i < N; i++) std::swap(M[r + 1][i], M[piv][i]);
        for (int i = 0; i < N; i++) std::swap(M[i][r + 1], M[i][piv]);

        const auto rinv = Tp(1) / M[r + 1][r];
        for (int i = r + 2; i < N; i++) {
            const auto n = M[i][r] * rinv;
            for (int j = 0; j < N; j++) M[i][j] -= M[r + 1][j] * n;
            for (int j = 0; j < N; j++) M[j][r + 1] += M[j][i] * n;
        }
    }
}

// Characteristic polynomial of matrix M (|xI - M|)
// Complexity: O(n^3)
// R. Rehman, I. C. Ipsen, "La Budde's Method for Computing Characteristic Polynomials," 2011.
template <class Tp> std::vector<Tp> characteristic_poly(std::vector<std::vector<Tp>> &M) {
    hessenberg_reduction(M);
    const int N = M.size();
    std::vector<std::vector<Tp>> p(N + 1); // p[i + 1] = (Characteristic polynomial of i-th leading principal minor)
    p[0] = {1};
    for (int i = 0; i < N; i++) {
        p[i + 1].assign(i + 2, 0);
        for (int j = 0; j < i + 1; j++) p[i + 1][j + 1] += p[i][j];
        for (int j = 0; j < i + 1; j++) p[i + 1][j] -= p[i][j] * M[i][i];
        Tp betas = 1;
        for (int j = i - 1; j >= 0; j--) {
            betas *= M[j + 1][j];
            Tp hb = -M[j][i] * betas;
            for (int k = 0; k < j + 1; k++) p[i + 1][k] += hb * p[j][k];
        }
    }
    return p[N];
}

// (X, N), (Y, N + 1), (Z, N + 2) shortest S-paths, without using vertices in `used_vs`
// return -1 if not found
int shortest_len(int N, int X, int Y, int Z, const vector<vector<int>> &conn, const vector<int> &used_vs) {
    vector<int> is_alive(N + 5, 1);
    for (auto i : used_vs) is_alive[i] = 0;
    vector<int> alive_vs;
    for (int i = 0; i < int(is_alive.size()); ++i) {
        if (is_alive[i]) alive_vs.push_back(i);
    }
    vector<int> vid(N + 5, -1);
    for (int j = 0; j < int(alive_vs.size()); ++j) vid[alive_vs[j]] = j;

    const vector<int> terminal_vs{X, Y, Z, N, N + 1, N + 2, N + 3, N + 4};
    auto Label = [&](int i) -> int {
        if (i == X or i == N) return 1;
        if (i == Y or i == N + 1) return 2;
        if (i == Z or i == N + 2) return 3;
        if (i == N + 3) return 4;
        if (i == N + 4) return 5;
        return 0;
    };

    // 論文通りに実装すると Z は 2(N + 5) * M 行列となるが,all zero な行が 8 つ発生して厄介
    // なので,これらを潰して (2N + 2) * M 行列(feasible ならばこれは行フルランク)を構築.
    // 潰した行を飛ばした index を取得する関数
    auto truncate = [&](int i) -> int {
        int red = 0;
        for (auto l : terminal_vs) {
            if (l * 2 < i) ++red;
        }
        return vid[i / 2] * 2 + (i % 2) - red;
    };

    int r = alive_vs.size() * 2 - 8;

    // M(x) = mat0 + mat1 * x
    // mat = [mat1, mat0] を考える
    vector mat(r, vector<mint>(r * 2));

    auto add_edge = [&](int u, int v, int w) {
        vector<pair<int, mint>> bret, cret;
        if (Label(u)) {
            bret.emplace_back(truncate(u * 2 + 1), -Label(u));
        } else {
            bret.emplace_back(truncate(u * 2), 1);
        }
        if (Label(v)) {
            bret.emplace_back(truncate(v * 2 + 1), Label(v));
        } else {
            bret.emplace_back(truncate(v * 2), -1);
        }
        cret.emplace_back(truncate(u * 2 + 1), 1);
        cret.emplace_back(truncate(v * 2 + 1), -1);
        mint x = rndgen(mt);
        for (auto [i, bi] : bret) {
            for (auto [j, cj] : cret) {
                auto v = bi * cj * x;
                if (w == 0) {
                    mat[i][r + j] += v;
                    mat[j][r + i] -= v;
                    mat[i][j] += v;
                    mat[j][i] -= v;
                }
                if (w == 1) {
                    mat[i][j] += v;
                    mat[j][i] -= v;
                }
            }
        }
    };

    for (int i = 0; i < N + 3; ++i) {
        if (!is_alive[i]) continue;
        for (int j = 0; j < N + 3; ++j) {
            if (!conn[i][j] or i > j or !is_alive[j]) continue;
            add_edge(i, j, 1);
        }
        if (!Label(i)) add_edge(i, N + 3, 0);
    }
    add_edge(N + 3, N + 4, 0);

    // det(x mat1 + mat0) を x の多項式として求めたい
    // mat1 を掃き出して det(x \lambda I - A) の形に帰着させる
    for (int i = 0; i < r; ++i) {
        int piv = -1;
        for (int h = i; h < r; ++h) {
            if (mat[h][i] != 0) piv = h;
        }
        if (piv < 0) return -1;
        assert(piv >= i);
        swap(mat[i], mat[piv]);

        mint inv = mat[i][i].inv();
        for (auto &x : mat[i]) x *= inv;

        for (int h = 0; h < r; ++h) {
            if (h == i) continue;
            if (mat[h][i] == 0) continue;
            const mint coeff = mat[h][i];
            for (int w = 0; w < r * 2; ++w) {
                mat[h][w] -= coeff * mat[i][w];
            }
        }
    }

    // det(xI - A) : https://judge.yosupo.jp/problem/characteristic_polynomial
    for (auto &v : mat) {
        v.erase(v.begin(), v.begin() + r);
        for (auto &x : v) x = -x;
    }
    auto det_poly = characteristic_poly<mint>(mat);

    int ret = 0;
    while (ret < int(det_poly.size()) and det_poly[ret] == 0) ++ret;

    if (ret < int(det_poly.size())) {
        return ret / 2;
    } else {
        return -1;
    }
}

// used_vs に含まれる頂点は使わずに,from -> to1 と from->to2 の点素なパスを構成する.
// 両方のパスが構築できなければ empty vector の組を返す.
pair<vector<int>, vector<int>> twopaths(int N, const vector<vector<int>> &to, const vector<int> &used_vs, int from, int to1, int to2) {
    const int gt = N * 2;
    atcoder::mcf_graph<int, int> graph(gt + 1);

    vector<int> valid_v(N, 1);
    for (auto i : used_vs) valid_v[i] = 0;

    valid_v[to1] = valid_v[to2] = 1;

    for (int i = 0; i < N; ++i) { graph.add_edge(i, i + N, valid_v[i], 0); }

    for (int i = 0; i < N; ++i) {
        for (auto j : to[i]) {
            graph.add_edge(i + N, j, 1, 1);
        }
    }
    graph.add_edge(to1 + N, gt, 1, 0);
    graph.add_edge(to2 + N, gt, 1, 0);
    auto f = graph.flow(from + N, gt, 2);
    if (f.first < 2) return {{}, {}};

    vector<int> conn(N);
    for (auto e : graph.edges()) {
        if (e.flow) {
            if (e.to == gt) continue;
            int s = e.from % N, t = e.to % N;
            conn[s] ^= t;
            conn[t] ^= s; // ループがないので生えている辺の xor だけ持っておけば後で解が復元できる
        }
    }

    vector<int> ret1, ret2;
    while (to1 != from) {
        ret1.push_back(to1);
        to1 = conn[to1];
        conn[to1] ^= ret1.back();
    }
    while (to2 != from) {
        ret2.push_back(to2);
        to2 = conn[to2];
        conn[to2] ^= ret2.back();
    }
    ret1.push_back(from);
    ret2.push_back(from);
    reverse(ret1.begin(), ret1.end());
    reverse(ret2.begin(), ret2.end());
    return {ret1, ret2};
}

template <typename T, T INF = std::numeric_limits<T>::max() / 2, int INVALID = -1> struct ShortestPath {
    int V, E;
    bool single_positive_weight;
    T wmin, wmax;
    std::vector<std::vector<std::pair<int, T>>> to;

    ShortestPath(int V = 0) : V(V), E(0), single_positive_weight(true), wmin(0), wmax(0), to(V) {}
    void add_edge(int s, int t, T w) {
        assert(0 <= s and s < V);
        assert(0 <= t and t < V);
        to[s].emplace_back(t, w);
        E++;
        if (w > 0 and wmax > 0 and wmax != w) single_positive_weight = false;
        wmin = std::min(wmin, w);
        wmax = std::max(wmax, w);
    }

    std::vector<T> dist;
    std::vector<int> prev;
    void ZeroOneBFS(int s) {
        assert(0 <= s and s < V);
        dist.assign(V, INF), prev.assign(V, INVALID);
        dist[s] = 0;
        std::deque<int> que;
        que.push_back(s);
        while (!que.empty()) {
            int v = que.front();
            que.pop_front();
            for (auto nx : to[v]) {
                T dnx = dist[v] + nx.second;
                if (dist[nx.first] > dnx) {
                    dist[nx.first] = dnx, prev[nx.first] = v;
                    if (nx.second) {
                        que.push_back(nx.first);
                    } else {
                        que.push_front(nx.first);
                    }
                }
            }
        }
    }
};


// a から b を経由し c に辿り着く点素なパスで,banned にあるものを使わないもののうち
// 最短で辞書順最小のものを求め,{[a, ..., b], [b, ..., c]} という pair of vector を返す.
pair<vector<int>, vector<int>> refine_path(int N, const vector<vector<int>> &to, int a, int b, int c, vector<int> banned) {
    vector<int> is_banned(N);
    for (auto i : banned) is_banned[i] = 1;
    auto [v1, v2] = twopaths(N, to, banned, b, a, c);
    const int len = v1.size() + v2.size();
    vector<int> ab{a};
    banned.push_back(a);
    is_banned[a] = 1;
    while (ab.back() != b) {
        int cur = ab.back();
        for (auto j : to[cur]) {
            if (j == b) {
                ab.push_back(b);
                break;
            }
            if (is_banned[j]) continue;
            if (j == c) continue;
            auto [p1, p2] = twopaths(N, to, banned, b, j, c);
            if (p1.empty()) continue;
            if (int(p1.size() + p2.size() + ab.size()) != len) continue;

            ab.push_back(j);
            banned.push_back(j);
            is_banned[j] = 1;
            break;
        }
    }

    ShortestPath<int, 1 << 20> sssp(N);
    for (int i = 0; i < N; ++i) {
        if (is_banned[i]) continue;
        for (auto j : to[i]) {
            if (is_banned[j]) continue;
            sssp.add_edge(i, j, 1);
        }
    }
    sssp.ZeroOneBFS(b);
    const auto Db = sssp.dist;
    sssp.ZeroOneBFS(c);
    const auto Dc = sssp.dist;

    vector<int> bc{b};
    int cur = b;
    while (cur != c) {
        for (auto nxt : to[cur]) {
            if (Db[nxt] == Db[cur] + 1 and Dc[nxt] == Dc[cur] - 1) {
                cur = nxt;
                bc.push_back(cur);
                break;
            }
        }
    }
    return {ab, bc};
}

int main() {
    cin.tie(nullptr), ios::sync_with_stdio(false);

    int N, M, X, Y, Z;
    cin >> N >> M >> X >> Y >> Z;
    --X, --Y, --Z;
    vector conn(N + 3, vector<int>(N + 3, 1));
    for (int i = 0; i < N + 3; ++i) conn[i][i] = 0;
    while (M--) {
        int u, v;
        cin >> u >> v;
        --u, --v;
        vector<int> us{u}, vs{v};
        if (u == X) us.push_back(N);
        if (u == Y) us.push_back(N + 1);
        if (u == Z) us.push_back(N + 2);
        if (v == X) vs.push_back(N);
        if (v == Y) vs.push_back(N + 1);
        if (v == Z) vs.push_back(N + 2);

        for (auto i : us) {
            for (auto j : vs) conn[i][j] = conn[j][i] = 0;
        }
    }

    int ans_len = shortest_len(N, X, Y, Z, conn, {});
    cout << ans_len << '\n';
    if (ans_len < 0) return 0;

    vector<int> ret;
    vector<int> is_used(N + 3);

    int cur = X;
    while (true) {
        vector<int> next_steps;
        for (int i = 0; i < N + 3; ++i) {
            if (conn[cur][i] and !is_used[i]) next_steps.push_back(i);
        }

        int ng = 0, ok = next_steps.size();
        while (ok - ng > 1) {
            int c = (ok + ng) / 2;
            for (int i = c; i < int(next_steps.size()); ++i) {
                conn[cur][next_steps[i]] = conn[next_steps[i]][cur] = 0;
            }

            auto d = shortest_len(N, cur, Y, Z, conn, ret);
            if (d < 0 or d + int(ret.size()) > ans_len) {
                ng = c;
            } else {
                ok = c;
            }
            for (int i = c; i < int(next_steps.size()); ++i) {
                conn[cur][next_steps[i]] = conn[next_steps[i]][cur] = 1;
            }
        }
        int nxt = next_steps.at(ng);

        ret.push_back(cur);
        is_used[cur] = 1;
        cur = nxt;

        if (cur == Y or cur == Z) break;
    }

    if (cur != Z) swap(Y, Z);
    // Z -> Y -> X 辞書順最小
    vector<vector<int>> to(N);
    for (int i = 0; i < N; ++i) { for (int j = 0; j < N; ++j) {
            if (conn[i][j]) to[i].push_back(j);
        }
    }
    auto [ZY, YX] = refine_path(N, to, Z, Y, X, vector<int>(ret.begin() + 1, ret.end()));

    for (auto v : ZY) ret.push_back(v);
    ret.pop_back();
    for (auto v : YX) ret.push_back(v);

    for (auto x : ret) cout << x + 1 << ' ';
    cout << '\n';
}
0