結果
問題 | No.8046 yukicoderの過去問 |
ユーザー | Coki628 |
提出日時 | 2021-12-06 18:56:41 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 447 ms / 2,000 ms |
コード長 | 13,098 bytes |
コンパイル時間 | 2,522 ms |
コンパイル使用メモリ | 228,896 KB |
実行使用メモリ | 23,776 KB |
最終ジャッジ日時 | 2024-07-07 09:30:07 |
合計ジャッジ時間 | 5,293 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,816 KB |
testcase_01 | AC | 1 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 441 ms
22,860 KB |
testcase_04 | AC | 1 ms
6,944 KB |
testcase_05 | AC | 439 ms
22,984 KB |
testcase_06 | AC | 447 ms
23,776 KB |
testcase_07 | AC | 440 ms
23,260 KB |
testcase_08 | AC | 436 ms
23,768 KB |
ソースコード
// #pragma GCC target("avx2") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") #define _USE_MATH_DEFINES #include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; using ld = long double; using pll = pair<ll, ll>; using pii = pair<int, int>; using pil = pair<int, ll>; using vvl = vector<vector<ll>>; using vvi = vector<vector<int>>; using vvpll = vector<vector<pll>>; using vvpil = vector<vector<pil>>; #define name4(i, a, b, c, d, e, ...) e #define rep(...) name4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rep1(i, a) for (ll i = 0, _aa = a; i < _aa; i++) #define rep2(i, a, b) for (ll i = a, _bb = b; i < _bb; i++) #define rep3(i, a, b, c) for (ll i = a, _bb = b; (c > 0 && a <= i && i < _bb) or (c < 0 && a >= i && i > _bb); i += c) #define rrep(i, a, b) for (ll i=(a); i>(b); i--) #define pb push_back #define eb emplace_back #define mkp make_pair #define ALL(A) A.begin(), A.end() #define UNIQUE(A) sort(ALL(A)), A.erase(unique(ALL(A)), A.end()) #define elif else if #define tostr to_string constexpr ll INF = 1e18; // constexpr ll INF = LONG_LONG_MAX; constexpr int MOD = 1000000007; // constexpr int MOD = 998244353; template<typename T> vector<vector<T>> list2d(int N, int M, T init) { return vector<vector<T>>(N, vector<T>(M, init)); } template<typename T> vector<vector<vector<T>>> list3d(int N, int M, int L, T init) { return vector<vector<vector<T>>>(N, vector<vector<T>>(M, vector<T>(L, init))); } template<typename T> vector<vector<vector<vector<T>>>> list4d(int N, int M, int L, int O, T init) { return vector<vector<vector<vector<T>>>>(N, vector<vector<vector<T>>>(M, vector<vector<T>>(L, vector<T>(O, init)))); } template<typename T=ll> vector<T> LIST(ll N) { vector<T> A(N); rep(i, N) cin >> A[i]; return A; } void print() { cout << '\n'; } template<typename T> void print(T out) { cout << out << '\n'; } template<typename T1, typename T2> void print(pair<T1, T2> out) { cout << out.first << ' ' << out.second << '\n'; } template<typename T> void print(const vector<T> &A) { rep(i, A.size()) { cout << A[i]; if (i != A.size()-1) cout << ' '; } cout << '\n'; } template<typename T> void print(const deque<T> &A) { vector<T> V(A.begin(), A.end()); print(V); } template<typename T> void print(const set<T> &S) { vector<T> A(S.begin(), S.end()); print(A); } template<int mod> struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; using mint = ModInt<MOD>; template<typename T> struct FormalPowerSeries { using Poly = vector<T>; using Conv = function<Poly(Poly, Poly)>; Conv conv; FormalPowerSeries(Conv conv) :conv(conv) {} Poly pre(const Poly& as, int deg) { return Poly(as.begin(), as.begin() + min((int)as.size(), deg)); } Poly add(Poly as, Poly bs) { int sz = max(as.size(), bs.size()); Poly cs(sz, T(0)); for (int i = 0; i < (int)as.size(); i++) cs[i] += as[i]; for (int i = 0; i < (int)bs.size(); i++) cs[i] += bs[i]; return cs; } Poly sub(Poly as, Poly bs) { int sz = max(as.size(), bs.size()); Poly cs(sz, T(0)); for (int i = 0; i < (int)as.size(); i++) cs[i] += as[i]; for (int i = 0; i < (int)bs.size(); i++) cs[i] -= bs[i]; return cs; } Poly mul(Poly as, Poly bs) { return conv(as, bs); } Poly mul(Poly as, T k) { for (auto& a : as) a *= k; return as; } // F(0) must not be 0, 第2引数は返す項数 Poly inv(Poly as, int deg) { assert(as[0] != T(0)); Poly rs({ T(1) / as[0] }); for (int i = 1; i < deg; i <<= 1) rs = pre(sub(add(rs, rs), mul(mul(rs, rs), pre(as, i << 1))), i << 1); return rs; } // not zero Poly div(Poly as, Poly bs) { while (as.back() == T(0)) as.pop_back(); while (bs.back() == T(0)) bs.pop_back(); if (bs.size() > as.size()) return Poly(); reverse(as.begin(), as.end()); reverse(bs.begin(), bs.end()); int need = as.size() - bs.size() + 1; Poly ds = pre(mul(as, inv(bs, need)), need); reverse(ds.begin(), ds.end()); return ds; } // F(0) must be 1 Poly sqrt(Poly as, int deg) { assert(as[0] == T(1)); T inv2 = T(1) / T(2); Poly ss({ T(1) }); for (int i = 1; i < deg; i <<= 1) { ss = pre(add(ss, mul(pre(as, i << 1), inv(ss, i << 1))), i << 1); for (T& x : ss) x *= inv2; } return ss; } Poly diff(Poly as) { int n = as.size(); Poly res(n - 1); for (int i = 1; i < n; i++) res[i - 1] = as[i] * T(i); return res; } Poly integral(Poly as) { int n = as.size(); Poly res(n + 1); res[0] = T(0); for (int i = 0; i < n; i++) res[i + 1] = as[i] / T(i + 1); return res; } // F(0) must be 1 Poly log(Poly as, int deg) { return pre(integral(mul(diff(as), inv(as, deg))), deg); } // F(0) must be 0 Poly exp(Poly as, int deg) { Poly f({ T(1) }); as[0] += T(1); for (int i = 1; i < deg; i <<= 1) f = pre(mul(f, sub(pre(as, i << 1), log(f, i << 1))), i << 1); return f; } Poly partition(int n) { Poly rs(n + 1); rs[0] = T(1); for (int k = 1; k <= n; k++) { if (1LL * k * (3 * k + 1) / 2 <= n) rs[k * (3 * k + 1) / 2] += T(k % 2 ? -1LL : 1LL); if (1LL * k * (3 * k - 1) / 2 <= n) rs[k * (3 * k - 1) / 2] += T(k % 2 ? -1LL : 1LL); } return inv(rs, n + 1); } }; template<class T> T extgcd(T a, T b, T& x, T& y) { for (T u = y = 1, v = x = 0; a;) { T q = b / a; swap(x -= q * u, u); swap(y -= q * v, v); swap(b -= q * a, a); } return b; } template<class T> T mod_inv(T a, T m) { T x, y; extgcd(a, m, x, y); return (m + x % m) % m; } ll mod_pow(ll a, ll n, ll mod) { ll ret = 1; ll p = a % mod; while (n) { if (n & 1) ret = ret * p % mod; p = p * p % mod; n >>= 1; } return ret; } struct MathsNTTModAny { template<int mod, int primitive_root> class NTT { public: int get_mod() const { return mod; } void _ntt(vector<ll>& a, int sign) { const int n = (int)a.size(); assert((n ^ (n & -n)) == 0); //n = 2^k const int g = 3; //g is primitive root of mod int h = (int)mod_pow(g, (mod - 1) / n, mod); // h^n = 1 if (sign == -1) h = (int)mod_inv(h, mod); //h = h^-1 % mod //bit reverse int i = 0; for (int j = 1; j < n - 1; ++j) { for (int k = n >> 1; k > (i ^= k); k >>= 1); if (j < i) swap(a[i], a[j]); } for (int m = 1; m < n; m *= 2) { const int m2 = 2 * m; const ll base = mod_pow(h, n / m2, mod); ll w = 1; rep(x, m) { for (int s = x; s < n; s += m2) { ll u = a[s]; ll d = a[s + m] * w % mod; a[s] = u + d; if (a[s] >= mod) a[s] -= mod; a[s + m] = u - d; if (a[s + m] < 0) a[s + m] += mod; } w = w * base % mod; } } for (auto& x : a) if (x < 0) x += mod; } void ntt(vector<ll>& input) { _ntt(input, 1); } void intt(vector<ll>& input) { _ntt(input, -1); const int n_inv = mod_inv((int)input.size(), mod); for (auto& x : input) x = x * n_inv % mod; } vector<ll> convolution(const vector<ll>& a, const vector<ll>& b) { int ntt_size = 1; while (ntt_size < (int)a.size() + (int)b.size()) ntt_size *= 2; vector<ll> _a = a, _b = b; _a.resize(ntt_size); _b.resize(ntt_size); ntt(_a); ntt(_b); rep(i, ntt_size) { (_a[i] *= _b[i]) %= mod; } intt(_a); return _a; } }; ll garner(vector<pair<int, int>> mr, int mod) { mr.emplace_back(mod, 0); vector<ll> coffs(((int)mr.size()), 1); vector<ll> constants(((int)mr.size()), 0); rep(i, ((int)mr.size()) - 1) { // coffs[i] * v + constants[i] == mr[i].second (mod mr[i].first) ll v = (mr[i].second - constants[i]) * mod_inv<ll>(coffs[i], mr[i].first) % mr[i].first; if (v < 0) v += mr[i].first; for (int j = i + 1; j < ((int)mr.size()); j++) { (constants[j] += coffs[j] * v) %= mr[j].first; (coffs[j] *= mr[i].first) %= mr[j].first; } } return constants[((int)mr.size()) - 1]; } typedef NTT<167772161, 3> NTT_1; typedef NTT<469762049, 3> NTT_2; typedef NTT<1224736769, 3> NTT_3; vector<ll> solve(vector<ll> a, vector<ll> b, int mod = 1000000007) { for (auto& x : a) x %= mod; for (auto& x : b) x %= mod; NTT_1 ntt1; NTT_2 ntt2; NTT_3 ntt3; assert(ntt1.get_mod() < ntt2.get_mod() && ntt2.get_mod() < ntt3.get_mod()); auto x = ntt1.convolution(a, b); auto y = ntt2.convolution(a, b); auto z = ntt3.convolution(a, b); const ll m1 = ntt1.get_mod(), m2 = ntt2.get_mod(), m3 = ntt3.get_mod(); const ll m1_inv_m2 = mod_inv<ll>(m1, m2); const ll m12_inv_m3 = mod_inv<ll>(m1 * m2, m3); const ll m12_mod = m1 * m2 % mod; vector<ll> ret((int)x.size()); rep(i, (int)x.size()) { ll v1 = (y[i] - x[i]) * m1_inv_m2 % m2; if (v1 < 0) v1 += m2; ll v2 = (z[i] - (x[i] + m1 * v1) % m3) * m12_inv_m3 % m3; if (v2 < 0) v2 += m3; ll constants3 = (x[i] + m1 * v1 + m12_mod * v2) % mod; if (constants3 < 0) constants3 += mod; ret[i] = constants3; } return ret; } vector<int> solve(vector<int> a, vector<int> b, int mod = 1000000007) { vector<ll> x(ALL(a)); vector<ll> y(ALL(b)); auto z = solve(x, y, mod); vector<int> res; for (auto &aa : z) res.push_back(aa % mod); return res; } vector<mint> solve(vector<mint> a, vector<mint> b, int mod = 1000000007) { int n = a.size(); vector<ll> x(n); rep(i, 0, n) x[i] = a[i].x; n = b.size(); vector<ll> y(n); rep(i, 0, n) y[i] = b[i].x; auto z = solve(x, y, mod); vector<int> res; for (auto &aa : z) res.push_back(aa % mod); vector<mint> res2; for (auto &x : res) res2.push_back(x); return res2; } }; /* FormalPowerSeries<mint> fps([&](auto a, auto b) { MathsNTTModAny ntt; return ntt.solve(a, b); }); */ void solve() { ll K, N; cin >> K >> N; auto A = LIST(N); vector<mint> G(K+1); rep(i, N) { G[A[i]] += 1; } FormalPowerSeries<mint> fps([&](auto a, auto b) { MathsNTTModAny ntt; return ntt.solve(a, b); }); vector<mint> F(K+1); F[0] = 1; // mint ans = 0; // rep(_, K) { // // dp[i+1] = dp[i]+A // F = fps.mul(F, G); // // ans += dp[i+1][K] // ans += F[K]; // } // print(ans); // 1/(1-G) F = fps.inv(fps.sub(F, G), K+1); mint ans = F[K]; print(ans); } int main() { cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(15); // single test case solve(); // multi test cases // int T; // cin >> T; // while (T--) solve(); return 0; }