結果
問題 | No.1889 K Consecutive Ks (Hard) |
ユーザー | miscalc |
提出日時 | 2021-12-07 20:36:17 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 5,524 bytes |
コンパイル時間 | 148 ms |
コンパイル使用メモリ | 82,244 KB |
実行使用メモリ | 215,320 KB |
最終ジャッジ日時 | 2024-10-04 07:31:02 |
合計ジャッジ時間 | 7,703 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 34 ms
54,304 KB |
testcase_01 | AC | 36 ms
54,340 KB |
testcase_02 | TLE | - |
testcase_03 | -- | - |
testcase_04 | -- | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
ソースコード
# ACL-for-python by shakayami # https://github.com/shakayami/ACL-for-python/blob/master/convolution.py class FFT(): def primitive_root_constexpr(self,m): if m==2:return 1 if m==167772161:return 3 if m==469762049:return 3 if m==754974721:return 11 if m==998244353:return 3 divs=[0]*20 divs[0]=2 cnt=1 x=(m-1)//2 while(x%2==0):x//=2 i=3 while(i*i<=x): if (x%i==0): divs[cnt]=i cnt+=1 while(x%i==0): x//=i i+=2 if x>1: divs[cnt]=x cnt+=1 g=2 while(1): ok=True for i in range(cnt): if pow(g,(m-1)//divs[i],m)==1: ok=False break if ok: return g g+=1 def bsf(self,x): res=0 while(x%2==0): res+=1 x//=2 return res butterfly_first=True butterfly_inv_first=True sum_e=[0]*30 sum_ie=[0]*30 def __init__(self,MOD): self.mod=MOD self.g=self.primitive_root_constexpr(self.mod) def butterfly(self,a): n=len(a) h=(n-1).bit_length() if self.butterfly_first: self.butterfly_first=False es=[0]*30 ies=[0]*30 cnt2=self.bsf(self.mod-1) e=pow(self.g,(self.mod-1)>>cnt2,self.mod) ie=pow(e,self.mod-2,self.mod) for i in range(cnt2,1,-1): es[i-2]=e ies[i-2]=ie e=(e*e)%self.mod ie=(ie*ie)%self.mod now=1 for i in range(cnt2-2): self.sum_e[i]=((es[i]*now)%self.mod) now*=ies[i] now%=self.mod for ph in range(1,h+1): w=1<<(ph-1) p=1<<(h-ph) now=1 for s in range(w): offset=s<<(h-ph+1) for i in range(p): l=a[i+offset] r=a[i+offset+p]*now r%=self.mod a[i+offset]=l+r a[i+offset]%=self.mod a[i+offset+p]=l-r a[i+offset+p]%=self.mod now*=self.sum_e[(~s & -~s).bit_length()-1] now%=self.mod def butterfly_inv(self,a): n=len(a) h=(n-1).bit_length() if self.butterfly_inv_first: self.butterfly_inv_first=False es=[0]*30 ies=[0]*30 cnt2=self.bsf(self.mod-1) e=pow(self.g,(self.mod-1)>>cnt2,self.mod) ie=pow(e,self.mod-2,self.mod) for i in range(cnt2,1,-1): es[i-2]=e ies[i-2]=ie e=(e*e)%self.mod ie=(ie*ie)%self.mod now=1 for i in range(cnt2-2): self.sum_ie[i]=((ies[i]*now)%self.mod) now*=es[i] now%=self.mod for ph in range(h,0,-1): w=1<<(ph-1) p=1<<(h-ph) inow=1 for s in range(w): offset=s<<(h-ph+1) for i in range(p): l=a[i+offset] r=a[i+offset+p] a[i+offset]=l+r a[i+offset]%=self.mod a[i+offset+p]=(l-r)*inow a[i+offset+p]%=self.mod inow*=self.sum_ie[(~s & -~s).bit_length()-1] inow%=self.mod def convolution(self,a,b): n=len(a);m=len(b) if not(a) or not(b): return [] if min(n,m)<=40: if n<m: n,m=m,n a,b=b,a res=[0]*(n+m-1) for i in range(n): for j in range(m): res[i+j]+=a[i]*b[j] res[i+j]%=self.mod return res z=1<<((n+m-2).bit_length()) a=a+[0]*(z-n) b=b+[0]*(z-m) self.butterfly(a) self.butterfly(b) c=[0]*z for i in range(z): c[i]=(a[i]*b[i])%self.mod self.butterfly_inv(c) iz=pow(z,self.mod-2,self.mod) for i in range(n+m-1): c[i]=(c[i]*iz)%self.mod return c[:n+m-1] mod = 998244353 CONV = FFT(mod) n, m = map(int, input().split()) d = [0] * (n + 10) for i in range(2, m + 1): k = 1 while k * i <= n: d[k * i - 1] += 1 k += 1 pw = [0] * (n + 10) pw[1], pw[2] = 1, m - 2 for i in range(2, n): pw[i + 1] = (m - 1) * pw[i] % mod dp1 = [0] * (n + 10) dp2 = [1] * (n + 10) for i in range(n): dp2[i + 1] = (m - 1) * dp2[i] % mod def onlineconvolution(l, r): if r - l <= 500: for i in range(l, r): for j in range(l, i): dp1[i] += dp2[j] * d[i - j] dp1[i] %= mod for j in range(l, i): dp2[i] -= dp1[j] * pw[i - j] dp2[i] %= mod return c = (l + r) // 2 onlineconvolution(l, c) dp20 = dp2[l : c] d0 = d[: r - l] r1 = CONV.convolution(dp20, d0) for i in range(c, r): dp1[i] += r1[i - l] if dp1[i] >= mod: dp1[i] -= mod dp10 = dp1[l : c] pw0 = pw[: r - l] r2 = CONV.convolution(dp10, pw0) for i in range(c, r): dp2[i] += mod - r2[i - l] if dp2[i] >= mod: dp2[i] -= mod onlineconvolution(c, r) onlineconvolution(0, n + 1) ans = pow(m, n, mod) + mod - dp2[n] if ans >= mod: ans -= mod print(ans)