結果
問題 | No.856 増える演算 |
ユーザー |
|
提出日時 | 2021-12-10 00:23:19 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 240 ms / 3,153 ms |
コード長 | 12,041 bytes |
コンパイル時間 | 13,342 ms |
コンパイル使用メモリ | 388,568 KB |
実行使用メモリ | 14,144 KB |
最終ジャッジ日時 | 2024-07-17 17:32:37 |
合計ジャッジ時間 | 30,760 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 80 |
ソースコード
#[allow(unused_imports)]use std::cmp::*;#[allow(unused_imports)]use std::collections::*;// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8macro_rules! input {($($r:tt)*) => {let stdin = std::io::stdin();let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));let mut next = move || -> String{bytes.by_ref().map(|r|r.unwrap() as char).skip_while(|c|c.is_whitespace()).take_while(|c|!c.is_whitespace()).collect()};input_inner!{next, $($r)*}};}macro_rules! input_inner {($next:expr) => {};($next:expr, ) => {};($next:expr, $var:ident : $t:tt $($r:tt)*) => {let $var = read_value!($next, $t);input_inner!{$next $($r)*}};}macro_rules! read_value {($next:expr, ( $($t:tt),* )) => {( $(read_value!($next, $t)),* )};($next:expr, [ $t:tt ; $len:expr ]) => {(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()};($next:expr, chars) => {read_value!($next, String).chars().collect::<Vec<char>>()};($next:expr, usize1) => {read_value!($next, usize) - 1};($next:expr, [ $t:tt ]) => {{let len = read_value!($next, usize);(0..len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()}};($next:expr, $t:ty) => {$next().parse::<$t>().expect("Parse error")};}/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342mod mod_int {use std::ops::*;pub trait Mod: Copy { fn m() -> i64; }#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }impl<M: Mod> ModInt<M> {// x >= 0pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }fn new_internal(x: i64) -> Self {ModInt { x: x, phantom: ::std::marker::PhantomData }}pub fn pow(self, mut e: i64) -> Self {debug_assert!(e >= 0);let mut sum = ModInt::new_internal(1);let mut cur = self;while e > 0 {if e % 2 != 0 { sum *= cur; }cur *= cur;e /= 2;}sum}#[allow(dead_code)]pub fn inv(self) -> Self { self.pow(M::m() - 2) }}impl<M: Mod> Default for ModInt<M> {fn default() -> Self { Self::new_internal(0) }}impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {type Output = Self;fn add(self, other: T) -> Self {let other = other.into();let mut sum = self.x + other.x;if sum >= M::m() { sum -= M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {type Output = Self;fn sub(self, other: T) -> Self {let other = other.into();let mut sum = self.x - other.x;if sum < 0 { sum += M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {type Output = Self;fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }}impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {fn add_assign(&mut self, other: T) { *self = *self + other; }}impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {fn sub_assign(&mut self, other: T) { *self = *self - other; }}impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {fn mul_assign(&mut self, other: T) { *self = *self * other; }}impl<M: Mod> Neg for ModInt<M> {type Output = Self;fn neg(self) -> Self { ModInt::new(0) - self }}impl<M> ::std::fmt::Display for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {self.x.fmt(f)}}impl<M: Mod> ::std::fmt::Debug for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {let (mut a, mut b, _) = red(self.x, M::m());if b < 0 {a = -a;b = -b;}write!(f, "{}/{}", a, b)}}impl<M: Mod> From<i64> for ModInt<M> {fn from(x: i64) -> Self { Self::new(x) }}// Finds the simplest fraction x/y congruent to r mod p.// The return value (x, y, z) satisfies x = y * r + z * p.fn red(r: i64, p: i64) -> (i64, i64, i64) {if r.abs() <= 10000 {return (r, 1, 0);}let mut nxt_r = p % r;let mut q = p / r;if 2 * nxt_r >= r {nxt_r -= r;q += 1;}if 2 * nxt_r <= -r {nxt_r += r;q -= 1;}let (x, z, y) = red(nxt_r, r);(x, y - q * z, z)}} // mod mod_intmacro_rules! define_mod {($struct_name: ident, $modulo: expr) => {#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]struct $struct_name {}impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }}}const MOD: i64 = 1_000_000_007;define_mod!(P, MOD);type MInt = mod_int::ModInt<P>;// FFT (in-place, verified as NTT only)// R: Ring + Copy// Verified by: https://judge.yosupo.jp/submission/53831// Adopts the technique used in https://judge.yosupo.jp/submission/3153.mod fft {use std::ops::*;// n should be a power of 2. zeta is a primitive n-th root of unity.// one is unity// Note that the result is bit-reversed.pub fn fft<R>(f: &mut [R], zeta: R, one: R)where R: Copy +Add<Output = R> +Sub<Output = R> +Mul<Output = R> {let n = f.len();assert!(n.is_power_of_two());let mut m = n;let mut base = zeta;unsafe {while m > 2 {m >>= 1;let mut r = 0;while r < n {let mut w = one;for s in r..r + m {let &u = f.get_unchecked(s);let d = *f.get_unchecked(s + m);*f.get_unchecked_mut(s) = u + d;*f.get_unchecked_mut(s + m) = w * (u - d);w = w * base;}r += 2 * m;}base = base * base;}if m > 1 {// m = 1let mut r = 0;while r < n {let &u = f.get_unchecked(r);let d = *f.get_unchecked(r + 1);*f.get_unchecked_mut(r) = u + d;*f.get_unchecked_mut(r + 1) = u - d;r += 2;}}}}pub fn inv_fft<R>(f: &mut [R], zeta_inv: R, one: R)where R: Copy +Add<Output = R> +Sub<Output = R> +Mul<Output = R> {let n = f.len();assert!(n.is_power_of_two());let zeta = zeta_inv; // inverse FFTlet mut zetapow = Vec::with_capacity(20);{let mut m = 1;let mut cur = zeta;while m < n {zetapow.push(cur);cur = cur * cur;m *= 2;}}let mut m = 1;unsafe {if m < n {zetapow.pop();let mut r = 0;while r < n {let &u = f.get_unchecked(r);let d = *f.get_unchecked(r + 1);*f.get_unchecked_mut(r) = u + d;*f.get_unchecked_mut(r + 1) = u - d;r += 2;}m = 2;}while m < n {let base = zetapow.pop().unwrap();let mut r = 0;while r < n {let mut w = one;for s in r..r + m {let &u = f.get_unchecked(s);let d = *f.get_unchecked(s + m) * w;*f.get_unchecked_mut(s) = u + d;*f.get_unchecked_mut(s + m) = u - d;w = w * base;}r += 2 * m;}m *= 2;}}}}/// Depends on ModInt.rs/// Finds x modulo M1*M2 s.t. x = a (mod M1), x = b (mod M2)./// Verified by https://yukicoder.me/submissions/303386.fn garner2<M1: mod_int::Mod, M2: mod_int::Mod>(a: mod_int::ModInt<M1>,b: mod_int::ModInt<M2>)-> i64 {let factor2 = mod_int::ModInt::new(M1::m()).inv();let factor1 = mod_int::ModInt::new(M2::m()).inv();((b * factor2).x * M1::m() + (a * factor1).x * M2::m()) % (M1::m() * M2::m())}mod arbmod {use crate::mod_int::{self, ModInt};use crate::fft;const MOD1: i64 = 1012924417;const MOD2: i64 = 1224736769;const G1: i64 = 5;const G2: i64 = 3;define_mod!(P1, MOD1);define_mod!(P2, MOD2);// f *= g, g is destroyedfn convolution_friendly<P: mod_int::Mod>(a: &[i64], b: &[i64], gen: i64) -> Vec<i64> {let d = a.len();let mut f = vec![ModInt::<P>::new(0); d];let mut g = vec![ModInt::<P>::new(0); d];for i in 0..d {f[i] = a[i].into();g[i] = b[i].into();}let zeta = ModInt::new(gen).pow((P::m() - 1) / d as i64);fft::fft(&mut f, zeta, ModInt::new(1));fft::fft(&mut g, zeta, ModInt::new(1));for i in 0..d {f[i] *= g[i];}fft::inv_fft(&mut f, zeta.inv(), ModInt::new(1));let inv = ModInt::new(d as i64).inv();let mut ans = vec![0; d];for i in 0..d {ans[i] = (f[i] * inv).x;}ans}// Precondition: 0 <= a[i], b[i] < mopub fn arbmod_convolution(a: &[i64], b: &[i64], ret: &mut [i64]) {let d = a.len();assert!(d.is_power_of_two());assert_eq!(d, b.len());let x = convolution_friendly::<P1>(&a, &b, G1);let y = convolution_friendly::<P2>(&a, &b, G2);for i in 0..d {ret[i] = super::garner2(ModInt::<P1>::new(x[i]), ModInt::<P2>::new(y[i]));}}}fn solve() {input! {n: usize,a: [usize; n],}const W: usize = 1 << 18;let mut ret = vec![0; W];let mut f = vec![0; W];for &a in &a {f[a] += 1;}arbmod::arbmod_convolution(&f, &f, &mut ret);for &a in &a {ret[2 * a] -= 1;}for i in 0..W {ret[i] /= 2;}let mut prod = MInt::new(1);let mut acc = vec![0; n + 1];for i in (0..n).rev() {acc[i] = acc[i + 1] + a[i] as i64;}for i in 0..n {prod *= MInt::new(a[i] as i64).pow(acc[i + 1]);}for i in 0..W {if ret[i] > 0 {prod *= MInt::new(i as i64).pow(ret[i]);}}eprintln!("P = {}", prod);let mut mi = (1.0 / 0.0, MInt::new(0));let mut ami = a[n - 1];for i in (0..n - 1).rev() {let x = a[i] as f64;let y = ami as f64;let val = y * x.ln() + (x + y).ln();let key = (val, MInt::new(a[i] as i64).pow(ami as i64)* (a[i] + ami) as i64);if mi > key {mi = key;}ami = min(ami, a[i]);}println!("{}", prod * mi.1.inv());}fn main() {// In order to avoid potential stack overflow, spawn a new thread.let stack_size = 104_857_600; // 100 MBlet thd = std::thread::Builder::new().stack_size(stack_size);thd.spawn(|| solve()).unwrap().join().unwrap();}