結果
| 問題 |
No.1781 LCM
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-12-10 00:50:42 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 3,087 ms / 5,000 ms |
| コード長 | 5,456 bytes |
| コンパイル時間 | 1,154 ms |
| コンパイル使用メモリ | 103,196 KB |
| 実行使用メモリ | 8,824 KB |
| 最終ジャッジ日時 | 2024-06-24 21:05:02 |
| 合計ジャッジ時間 | 21,862 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 31 |
ソースコード
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
static constexpr unsigned M = M_;
unsigned x;
constexpr ModInt() : x(0U) {}
constexpr ModInt(unsigned x_) : x(x_ % M) {}
constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
ModInt pow(long long e) const {
if (e < 0) return inv().pow(-e);
ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
}
ModInt inv() const {
unsigned a = M, b = x; int y = 0, z = 1;
for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
assert(a == 1U); return ModInt(y);
}
ModInt operator+() const { return *this; }
ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
explicit operator bool() const { return x; }
bool operator==(const ModInt &a) const { return (x == a.x); }
bool operator!=(const ModInt &a) const { return (x != a.x); }
friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////
constexpr unsigned MO = 998244353;
using Mint = ModInt<MO>;
// floor(sqrt(a))
long long floorSqrt(long long a) {
long long b = a, x = 0, y = 0;
for (int e = (63 - __builtin_clzll(a)) & ~1; e >= 0; e -= 2) {
x <<= 1;
y <<= 1;
if (b >= (y | 1) << e) {
b -= (y | 1) << e;
x |= 1;
y += 2;
}
}
return x;
}
constexpr int LIM = 320'000;
Int N, sqrtN;
bool isPrime[LIM];
int primesLen;
Int primes[LIM];
Mint small[LIM], large[LIM];
Mint get(Int n) {
return (n <= sqrtN) ? small[n] : large[N / n];
}
void primeSum0() {
sqrtN = floorSqrt(N);
fill(isPrime + 2, isPrime + (sqrtN + 1), true);
primesLen = 0;
fill(small, small + (sqrtN + 1), 0);
fill(large, large + (sqrtN + 1), 0);
for (Int n = 1; n <= sqrtN; ++n) small[n] = n;
for (Int l = 1; l <= sqrtN; ++l) large[l] = N / l;
for (Int p = 2; p <= sqrtN; ++p) if (isPrime[p]) {
primes[primesLen++] = p;
for (Int n = p * p; n <= sqrtN; n += p) isPrime[n] = false;
for (Int l = 1; l <= sqrtN; ++l) {
const Int n = N / l;
if (n < p * p) break;
large[l] -= (get(n / p) - small[p - 1]);
}
for (Int n = sqrtN; n >= 1; --n) {
if (n < p * p) break;
small[n] -= (get(n / p) - small[p - 1]);
}
}
for (Int n = 1; n <= sqrtN; ++n) small[n] -= 1;
for (Int l = 1; l <= sqrtN; ++l) large[l] -= 1;
}
constexpr int E = 40;
Int K;
Mint pw[E];
Mint ans;
void dfs(int pos, Int n, Mint val, int e) {
if (pos >= 0) {
ans += (val * pw[e + 1]);
const Int nn = n / primes[pos];
if (nn >= primes[pos]) {
dfs(pos, nn, val, e + 1);
}
}
ans += (get(n) - pos - 1) * (val * pw[e] * pw[1]);
for (int i = pos + 1; i < primesLen; ++i) {
const Int nn = n / primes[i];
if (nn < primes[i]) {
break;
}
dfs(i, nn, val * pw[e], 1);
}
}
int main() {
for (; ~scanf("%lld%lld", &K, &N); ) {
primeSum0();
for (int e = 0; e < E; ++e) {
pw[e] = Mint(e + 1).pow(K);
}
ans = 1;
dfs(-1, N, 1, 0);
printf("%u\n", ans.x);
fflush(stdout);
}
return 0;
}