結果
問題 | No.1073 無限すごろく |
ユーザー |
|
提出日時 | 2021-12-10 22:19:53 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 4,810 bytes |
コンパイル時間 | 4,025 ms |
コンパイル使用メモリ | 231,512 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-18 16:42:16 |
合計ジャッジ時間 | 5,411 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 30 |
ソースコード
#include <bits/stdc++.h>#include <atcoder/all>typedef long long int ll;typedef long long int ull;#define MP make_pairusing namespace std;using namespace atcoder;typedef pair<ll, ll> P;// const ll MOD = 998244353;const ll MOD = 1000000007;// using mint = modint998244353;using mint = modint1000000007;const double pi = 3.1415926536;const int MAX = 2000003;long long fac[MAX], finv[MAX], inv[MAX];// テーブルを作る前処理void COMinit() {fac[0] = fac[1] = 1;finv[0] = finv[1] = 1;inv[1] = 1;for (int i = 2; i < MAX; i++){fac[i] = fac[i - 1] * i % MOD;inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;finv[i] = finv[i - 1] * inv[i] % MOD;}}// 二項係数計算long long COM(int n, int k){if (n < k) return 0;if (n < 0 || k < 0) return 0;return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;}ll gcd (ll x, ll y) {if (y == 0) return x;else if (y > x) {return gcd (y, x);}else return gcd(x % y, y);}ll lcm (ll x, ll y) {return x / gcd(x, y) * y;}ll my_sqrt(ll x) {ll m = 0;ll M = 1000000001;while (M - m > 1) {ll now = (M + m) / 2;if (now * now <= x) {m = now;}else {M = now;}}return m;}ll keta(ll n) {ll ret = 0;while (n) {n /= 10;ret++;}return ret;}ll ceil(ll n, ll m) {ll ret = n / m;if (n % m) ret++;return ret;}ll pow_ll(ll x, ll n) {if (n == 0) return 1;if (n % 2) {return pow_ll(x, n - 1) * x;}else {ll tmp = pow_ll(x, n / 2);return tmp * tmp;}}template <typename T, int H, int W>struct Matrix {using Array = array<array<T, W>, H>;Array A;Matrix() : A() {for (int i = 0; i < H; i++)for (int j = 0; j < W; j++) (*this)[i][j] = T();}int height() const { return H; }int width() const { return W; }inline const array<T, W> &operator[](int k) const { return A[k]; }inline array<T, W> &operator[](int k) { return A[k]; }static Matrix I() {assert(H == W);Matrix mat;for (int i = 0; i < H; i++) mat[i][i] = 1;return (mat);}Matrix &operator+=(const Matrix &B) {for (int i = 0; i < H; i++)for (int j = 0; j < W; j++) A[i][j] += B[i][j];return (*this);}Matrix &operator-=(const Matrix &B) {for (int i = 0; i < H; i++)for (int j = 0; j < W; j++) A[i][j] -= B[i][j];return (*this);}Matrix &operator*=(const Matrix &B) {assert(H == W);Matrix C;for (int i = 0; i < H; i++)for (int k = 0; k < H; k++)for (int j = 0; j < H; j++) C[i][j] += A[i][k] * B[k][j];A.swap(C.A);return (*this);}Matrix &operator^=(long long k) {Matrix B = Matrix::I();while (k > 0) {if (k & 1) B *= *this;*this *= *this;k >>= 1LL;}A.swap(B.A);return (*this);}Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }friend ostream &operator<<(ostream &os, Matrix &p) {for (int i = 0; i < H; i++) {os << "[";for (int j = 0; j < W; j++) {os << p[i][j] << (j + 1 == W ? "]\n" : ",");}}return (os);}T determinant(int n = -1) {if (n == -1) n = H;Matrix B(*this);T ret = 1;for (int i = 0; i < n; i++) {int idx = -1;for (int j = i; j < n; j++) {if (B[j][i] != 0) {idx = j;break;}}if (idx == -1) return 0;if (i != idx) {ret *= T(-1);swap(B[i], B[idx]);}ret *= B[i][i];T inv = T(1) / B[i][i];for (int j = 0; j < n; j++) {B[i][j] *= inv;}for (int j = i + 1; j < n; j++) {T a = B[j][i];if (a == 0) continue;for (int k = i; k < n; k++) {B[j][k] -= B[i][k] * a;}}}return (ret);}};Matrix<mint, 6, 6> f(Matrix<mint, 6, 6> m, ll n) {if (n == 0) {return m.I();}if (n % 2 == 0) {Matrix<mint, 6, 6> tmp = f(m, n / 2);return tmp * tmp;}else {return m * f(m, n - 1);}}int main() {Matrix<mint, 6, 6> m;for (int i = 0; i < 6; i++) {for (int j = 0; j < 6; j++) {if (i + 1 == j) m[i][j] = 1;else if (i == 5) m[i][j] = 166666668;else m[i][j] = 0;}}ll n;cin >> n;cout << f(m,n)[5][5].val() << endl;return 0;}