結果

問題 No.1548 [Cherry 2nd Tune B] 貴方と私とサイクルとモーメント
ユーザー koba-e964
提出日時 2021-12-11 14:13:49
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 806 ms / 4,500 ms
コード長 12,851 bytes
コンパイル時間 27,688 ms
コンパイル使用メモリ 377,732 KB
実行使用メモリ 52,736 KB
最終ジャッジ日時 2024-07-19 19:09:06
合計ジャッジ時間 42,409 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 42
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
use std::io::Read;
#[allow(dead_code)]
fn getline() -> String {
let mut ret = String::new();
std::io::stdin().read_line(&mut ret).ok().unwrap();
ret
}
fn get_word() -> String {
let stdin = std::io::stdin();
let mut stdin=stdin.lock();
let mut u8b: [u8; 1] = [0];
loop {
let mut buf: Vec<u8> = Vec::with_capacity(16);
loop {
let res = stdin.read(&mut u8b);
if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {
break;
} else {
buf.push(u8b[0]);
}
}
if buf.len() >= 1 {
let ret = String::from_utf8(buf).unwrap();
return ret;
}
}
}
/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342
mod mod_int {
use std::ops::*;
pub trait Mod: Copy { fn m() -> i64; }
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }
impl<M: Mod> ModInt<M> {
// x >= 0
pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }
fn new_internal(x: i64) -> Self {
ModInt { x: x, phantom: ::std::marker::PhantomData }
}
pub fn pow(self, mut e: i64) -> Self {
debug_assert!(e >= 0);
let mut sum = ModInt::new_internal(1);
let mut cur = self;
while e > 0 {
if e % 2 != 0 { sum *= cur; }
cur *= cur;
e /= 2;
}
sum
}
#[allow(dead_code)]
pub fn inv(self) -> Self { self.pow(M::m() - 2) }
}
impl<M: Mod> Default for ModInt<M> {
fn default() -> Self { Self::new_internal(0) }
}
impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {
type Output = Self;
fn add(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x + other.x;
if sum >= M::m() { sum -= M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {
type Output = Self;
fn sub(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x - other.x;
if sum < 0 { sum += M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {
type Output = Self;
fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }
}
impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {
fn add_assign(&mut self, other: T) { *self = *self + other; }
}
impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {
fn sub_assign(&mut self, other: T) { *self = *self - other; }
}
impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {
fn mul_assign(&mut self, other: T) { *self = *self * other; }
}
impl<M: Mod> Neg for ModInt<M> {
type Output = Self;
fn neg(self) -> Self { ModInt::new(0) - self }
}
impl<M> ::std::fmt::Display for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
self.x.fmt(f)
}
}
impl<M: Mod> ::std::fmt::Debug for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
let (mut a, mut b, _) = red(self.x, M::m());
if b < 0 {
a = -a;
b = -b;
}
write!(f, "{}/{}", a, b)
}
}
impl<M: Mod> From<i64> for ModInt<M> {
fn from(x: i64) -> Self { Self::new(x) }
}
// Finds the simplest fraction x/y congruent to r mod p.
// The return value (x, y, z) satisfies x = y * r + z * p.
fn red(r: i64, p: i64) -> (i64, i64, i64) {
if r.abs() <= 10000 {
return (r, 1, 0);
}
let mut nxt_r = p % r;
let mut q = p / r;
if 2 * nxt_r >= r {
nxt_r -= r;
q += 1;
}
if 2 * nxt_r <= -r {
nxt_r += r;
q -= 1;
}
let (x, z, y) = red(nxt_r, r);
(x, y - q * z, z)
}
} // mod mod_int
macro_rules! define_mod {
($struct_name: ident, $modulo: expr) => {
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct $struct_name {}
impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }
}
}
const MOD: i64 = 998_244_353;
define_mod!(P, MOD);
type MInt = mod_int::ModInt<P>;
// Lazy Segment Tree. This data structure is useful for fast folding and updating on intervals of an array
// whose elements are elements of monoid T. Note that constructing this tree requires the identity
// element of T and the operation of T. This is monomorphised, because of efficiency. T := i64, biop = max, upop = (+)
// Reference: https://github.com/atcoder/ac-library/blob/master/atcoder/lazysegtree.hpp
// Verified by: https://judge.yosupo.jp/submission/68794
// https://atcoder.jp/contests/joisc2021/submissions/27734236
pub trait ActionRing {
type T: Clone + Copy; // data
type U: Clone + Copy + PartialEq + Eq; // action
fn biop(x: Self::T, y: Self::T) -> Self::T;
fn update(x: Self::T, a: Self::U) -> Self::T;
fn upop(fst: Self::U, snd: Self::U) -> Self::U;
fn e() -> Self::T;
fn upe() -> Self::U; // identity for upop
}
#[derive(Clone)]
pub struct LazySegTree<R: ActionRing + Clone> {
n: usize,
dep: usize,
dat: Vec<R::T>,
lazy: Vec<R::U>,
}
impl<R: ActionRing + Clone> LazySegTree<R> {
pub fn new(n_: usize) -> Self {
let mut n = 1;
let mut dep = 0;
while n < n_ { n *= 2; dep += 1; } // n is a power of 2
LazySegTree {
n: n,
dep: dep,
dat: vec![R::e(); 2 * n],
lazy: vec![R::upe(); n],
}
}
#[allow(unused)]
pub fn with(a: &[R::T]) -> Self {
let mut ret = Self::new(a.len());
let n = ret.n;
for i in 0..a.len() {
ret.dat[n + i] = a[i];
}
for i in (1..n).rev() {
ret.update_node(i);
}
ret
}
#[inline]
pub fn set(&mut self, idx: usize, x: R::T) {
debug_assert!(idx < self.n);
self.apply_any(idx, |_t| x);
}
#[inline]
pub fn apply(&mut self, idx: usize, f: R::U) {
debug_assert!(idx < self.n);
self.apply_any(idx, |t| R::update(t, f));
}
pub fn apply_any<F: Fn(R::T) -> R::T>(&mut self, idx: usize, f: F) {
debug_assert!(idx < self.n);
let idx = idx + self.n;
for i in (1..self.dep + 1).rev() {
self.push(idx >> i);
}
self.dat[idx] = f(self.dat[idx]);
for i in 1..self.dep + 1 {
self.update_node(idx >> i);
}
}
pub fn get(&mut self, idx: usize) -> R::T {
debug_assert!(idx < self.n);
let idx = idx + self.n;
for i in (1..self.dep + 1).rev() {
self.push(idx >> i);
}
self.dat[idx]
}
/* [l, r) (note: half-inclusive) */
#[inline]
pub fn query(&mut self, l: usize, r: usize) -> R::T {
debug_assert!(l <= r && r <= self.n);
if l == r { return R::e(); }
let mut l = l + self.n;
let mut r = r + self.n;
for i in (1..self.dep + 1).rev() {
if ((l >> i) << i) != l { self.push(l >> i); }
if ((r >> i) << i) != r { self.push((r - 1) >> i); }
}
let mut sml = R::e();
let mut smr = R::e();
while l < r {
if (l & 1) != 0 {
sml = R::biop(sml, self.dat[l]);
l += 1;
}
if (r & 1) != 0 {
r -= 1;
smr = R::biop(self.dat[r], smr);
}
l >>= 1;
r >>= 1;
}
R::biop(sml, smr)
}
/* ary[i] = upop(ary[i], v) for i in [l, r) (half-inclusive) */
#[inline]
pub fn update(&mut self, l: usize, r: usize, f: R::U) {
debug_assert!(l <= r && r <= self.n);
if l == r { return; }
let mut l = l + self.n;
let mut r = r + self.n;
for i in (1..self.dep + 1).rev() {
if ((l >> i) << i) != l { self.push(l >> i); }
if ((r >> i) << i) != r { self.push((r - 1) >> i); }
}
{
let l2 = l;
let r2 = r;
while l < r {
if (l & 1) != 0 {
self.all_apply(l, f);
l += 1;
}
if (r & 1) != 0 {
r -= 1;
self.all_apply(r, f);
}
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for i in 1..self.dep + 1 {
if ((l >> i) << i) != l { self.update_node(l >> i); }
if ((r >> i) << i) != r { self.update_node((r - 1) >> i); }
}
}
#[inline]
fn update_node(&mut self, k: usize) {
self.dat[k] = R::biop(self.dat[2 * k], self.dat[2 * k + 1]);
}
fn all_apply(&mut self, k: usize, f: R::U) {
self.dat[k] = R::update(self.dat[k], f);
if k < self.n {
self.lazy[k] = R::upop(self.lazy[k], f);
}
}
fn push(&mut self, k: usize) {
let val = self.lazy[k];
self.all_apply(2 * k, val);
self.all_apply(2 * k + 1, val);
self.lazy[k] = R::upe();
}
}
#[derive(Clone)]
enum Affine {}
type AffineInt = MInt; // Change here to change type
impl ActionRing for Affine {
type T = (AffineInt, AffineInt); // data, size
type U = (AffineInt, AffineInt); // action, (a, b) |-> x |-> ax + b
fn biop((x, s): Self::T, (y, t): Self::T) -> Self::T {
(x + y, s + t)
}
fn update((x, s): Self::T, (a, b): Self::U) -> Self::T {
(x * a + b * s, s)
}
fn upop(fst: Self::U, snd: Self::U) -> Self::U {
let (a, b) = fst;
let (c, d) = snd;
(a * c, b * c + d)
}
fn e() -> Self::T {
(0.into(), 0.into())
}
fn upe() -> Self::U { // identity for upop
(1.into(), 0.into())
}
}
#[allow(dead_code)]
fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }
fn upd(n: usize, st: &mut LazySegTree<Affine>, l: usize, r: usize, x: MInt) {
if l <= r {
st.update(l, r + 1, (0.into(), x));
} else {
st.update(l, n, (0.into(), x));
st.update(0, r + 1, (0.into(), x));
}
}
fn que(n: usize, st: &mut LazySegTree<Affine>, l: usize, r: usize) -> MInt {
if l <= r {
st.query(l, r + 1).0
} else {
let a = st.query(l, n).0;
let b = st.query(0, r + 1).0;
a + b
}
}
fn solve() {
let n: usize = get();
let a: Vec<i64> = (0..n).map(|_| get()).collect();
let q: usize = get();
let mut st = vec![LazySegTree::<Affine>::new(n); 4];
for i in 0..n {
let b = MInt::new(a[i]);
let mut c = b;
for j in 0..4 {
st[j].set(i, (c, 1.into()));
c *= b;
}
}
let comb = vec![
vec![1],
vec![1, 1],
vec![1, 2, 1],
vec![1, 3, 3, 1],
vec![1, 4, 6, 4, 1],
];
for _ in 0..q {
let ty: usize = get();
let u = get::<usize>() - 1;
let v = get::<usize>() - 1;
let w = get::<usize>() - 1;
let (u, v) = if u > v { (v, u) } else { (u, v) };
let (l, r) = if u < w && w < v {
(u, v)
} else {
(v, u)
};
if ty == 0 {
let b: i64 = get();
let b = MInt::new(b);
let mut c = b;
for i in 0..4 {
upd(n, &mut st[i], l, r, c);
c *= b;
}
} else {
let len = (r + n - l) % n + 1;
let len = len as i64;
let leninv = MInt::new(len).inv();
let mut ans = MInt::new(0);
let avg = -que(n, &mut st[0], l, r) * leninv;
let mut c = MInt::new(1);
for i in (0..ty + 1).rev() {
let tmp = if i == 0 {
MInt::new(len)
} else {
que(n, &mut st[i - 1], l, r)
} * comb[ty][i] * c;
ans += tmp;
c *= avg;
}
println!("{}", ans * leninv);
}
}
}
fn main() {
// In order to avoid potential stack overflow, spawn a new thread.
let stack_size = 104_857_600; // 100 MB
let thd = std::thread::Builder::new().stack_size(stack_size);
thd.spawn(|| solve()).unwrap().join().unwrap();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0