結果
問題 | No.1548 [Cherry 2nd Tune B] 貴方と私とサイクルとモーメント |
ユーザー |
|
提出日時 | 2021-12-11 14:13:49 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 806 ms / 4,500 ms |
コード長 | 12,851 bytes |
コンパイル時間 | 27,688 ms |
コンパイル使用メモリ | 377,732 KB |
実行使用メモリ | 52,736 KB |
最終ジャッジ日時 | 2024-07-19 19:09:06 |
合計ジャッジ時間 | 42,409 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 42 |
ソースコード
#[allow(unused_imports)]use std::cmp::*;#[allow(unused_imports)]use std::collections::*;use std::io::Read;#[allow(dead_code)]fn getline() -> String {let mut ret = String::new();std::io::stdin().read_line(&mut ret).ok().unwrap();ret}fn get_word() -> String {let stdin = std::io::stdin();let mut stdin=stdin.lock();let mut u8b: [u8; 1] = [0];loop {let mut buf: Vec<u8> = Vec::with_capacity(16);loop {let res = stdin.read(&mut u8b);if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {break;} else {buf.push(u8b[0]);}}if buf.len() >= 1 {let ret = String::from_utf8(buf).unwrap();return ret;}}}/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342mod mod_int {use std::ops::*;pub trait Mod: Copy { fn m() -> i64; }#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }impl<M: Mod> ModInt<M> {// x >= 0pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }fn new_internal(x: i64) -> Self {ModInt { x: x, phantom: ::std::marker::PhantomData }}pub fn pow(self, mut e: i64) -> Self {debug_assert!(e >= 0);let mut sum = ModInt::new_internal(1);let mut cur = self;while e > 0 {if e % 2 != 0 { sum *= cur; }cur *= cur;e /= 2;}sum}#[allow(dead_code)]pub fn inv(self) -> Self { self.pow(M::m() - 2) }}impl<M: Mod> Default for ModInt<M> {fn default() -> Self { Self::new_internal(0) }}impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {type Output = Self;fn add(self, other: T) -> Self {let other = other.into();let mut sum = self.x + other.x;if sum >= M::m() { sum -= M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {type Output = Self;fn sub(self, other: T) -> Self {let other = other.into();let mut sum = self.x - other.x;if sum < 0 { sum += M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {type Output = Self;fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }}impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {fn add_assign(&mut self, other: T) { *self = *self + other; }}impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {fn sub_assign(&mut self, other: T) { *self = *self - other; }}impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {fn mul_assign(&mut self, other: T) { *self = *self * other; }}impl<M: Mod> Neg for ModInt<M> {type Output = Self;fn neg(self) -> Self { ModInt::new(0) - self }}impl<M> ::std::fmt::Display for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {self.x.fmt(f)}}impl<M: Mod> ::std::fmt::Debug for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {let (mut a, mut b, _) = red(self.x, M::m());if b < 0 {a = -a;b = -b;}write!(f, "{}/{}", a, b)}}impl<M: Mod> From<i64> for ModInt<M> {fn from(x: i64) -> Self { Self::new(x) }}// Finds the simplest fraction x/y congruent to r mod p.// The return value (x, y, z) satisfies x = y * r + z * p.fn red(r: i64, p: i64) -> (i64, i64, i64) {if r.abs() <= 10000 {return (r, 1, 0);}let mut nxt_r = p % r;let mut q = p / r;if 2 * nxt_r >= r {nxt_r -= r;q += 1;}if 2 * nxt_r <= -r {nxt_r += r;q -= 1;}let (x, z, y) = red(nxt_r, r);(x, y - q * z, z)}} // mod mod_intmacro_rules! define_mod {($struct_name: ident, $modulo: expr) => {#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]struct $struct_name {}impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }}}const MOD: i64 = 998_244_353;define_mod!(P, MOD);type MInt = mod_int::ModInt<P>;// Lazy Segment Tree. This data structure is useful for fast folding and updating on intervals of an array// whose elements are elements of monoid T. Note that constructing this tree requires the identity// element of T and the operation of T. This is monomorphised, because of efficiency. T := i64, biop = max, upop = (+)// Reference: https://github.com/atcoder/ac-library/blob/master/atcoder/lazysegtree.hpp// Verified by: https://judge.yosupo.jp/submission/68794// https://atcoder.jp/contests/joisc2021/submissions/27734236pub trait ActionRing {type T: Clone + Copy; // datatype U: Clone + Copy + PartialEq + Eq; // actionfn biop(x: Self::T, y: Self::T) -> Self::T;fn update(x: Self::T, a: Self::U) -> Self::T;fn upop(fst: Self::U, snd: Self::U) -> Self::U;fn e() -> Self::T;fn upe() -> Self::U; // identity for upop}#[derive(Clone)]pub struct LazySegTree<R: ActionRing + Clone> {n: usize,dep: usize,dat: Vec<R::T>,lazy: Vec<R::U>,}impl<R: ActionRing + Clone> LazySegTree<R> {pub fn new(n_: usize) -> Self {let mut n = 1;let mut dep = 0;while n < n_ { n *= 2; dep += 1; } // n is a power of 2LazySegTree {n: n,dep: dep,dat: vec![R::e(); 2 * n],lazy: vec![R::upe(); n],}}#[allow(unused)]pub fn with(a: &[R::T]) -> Self {let mut ret = Self::new(a.len());let n = ret.n;for i in 0..a.len() {ret.dat[n + i] = a[i];}for i in (1..n).rev() {ret.update_node(i);}ret}#[inline]pub fn set(&mut self, idx: usize, x: R::T) {debug_assert!(idx < self.n);self.apply_any(idx, |_t| x);}#[inline]pub fn apply(&mut self, idx: usize, f: R::U) {debug_assert!(idx < self.n);self.apply_any(idx, |t| R::update(t, f));}pub fn apply_any<F: Fn(R::T) -> R::T>(&mut self, idx: usize, f: F) {debug_assert!(idx < self.n);let idx = idx + self.n;for i in (1..self.dep + 1).rev() {self.push(idx >> i);}self.dat[idx] = f(self.dat[idx]);for i in 1..self.dep + 1 {self.update_node(idx >> i);}}pub fn get(&mut self, idx: usize) -> R::T {debug_assert!(idx < self.n);let idx = idx + self.n;for i in (1..self.dep + 1).rev() {self.push(idx >> i);}self.dat[idx]}/* [l, r) (note: half-inclusive) */#[inline]pub fn query(&mut self, l: usize, r: usize) -> R::T {debug_assert!(l <= r && r <= self.n);if l == r { return R::e(); }let mut l = l + self.n;let mut r = r + self.n;for i in (1..self.dep + 1).rev() {if ((l >> i) << i) != l { self.push(l >> i); }if ((r >> i) << i) != r { self.push((r - 1) >> i); }}let mut sml = R::e();let mut smr = R::e();while l < r {if (l & 1) != 0 {sml = R::biop(sml, self.dat[l]);l += 1;}if (r & 1) != 0 {r -= 1;smr = R::biop(self.dat[r], smr);}l >>= 1;r >>= 1;}R::biop(sml, smr)}/* ary[i] = upop(ary[i], v) for i in [l, r) (half-inclusive) */#[inline]pub fn update(&mut self, l: usize, r: usize, f: R::U) {debug_assert!(l <= r && r <= self.n);if l == r { return; }let mut l = l + self.n;let mut r = r + self.n;for i in (1..self.dep + 1).rev() {if ((l >> i) << i) != l { self.push(l >> i); }if ((r >> i) << i) != r { self.push((r - 1) >> i); }}{let l2 = l;let r2 = r;while l < r {if (l & 1) != 0 {self.all_apply(l, f);l += 1;}if (r & 1) != 0 {r -= 1;self.all_apply(r, f);}l >>= 1;r >>= 1;}l = l2;r = r2;}for i in 1..self.dep + 1 {if ((l >> i) << i) != l { self.update_node(l >> i); }if ((r >> i) << i) != r { self.update_node((r - 1) >> i); }}}#[inline]fn update_node(&mut self, k: usize) {self.dat[k] = R::biop(self.dat[2 * k], self.dat[2 * k + 1]);}fn all_apply(&mut self, k: usize, f: R::U) {self.dat[k] = R::update(self.dat[k], f);if k < self.n {self.lazy[k] = R::upop(self.lazy[k], f);}}fn push(&mut self, k: usize) {let val = self.lazy[k];self.all_apply(2 * k, val);self.all_apply(2 * k + 1, val);self.lazy[k] = R::upe();}}#[derive(Clone)]enum Affine {}type AffineInt = MInt; // Change here to change typeimpl ActionRing for Affine {type T = (AffineInt, AffineInt); // data, sizetype U = (AffineInt, AffineInt); // action, (a, b) |-> x |-> ax + bfn biop((x, s): Self::T, (y, t): Self::T) -> Self::T {(x + y, s + t)}fn update((x, s): Self::T, (a, b): Self::U) -> Self::T {(x * a + b * s, s)}fn upop(fst: Self::U, snd: Self::U) -> Self::U {let (a, b) = fst;let (c, d) = snd;(a * c, b * c + d)}fn e() -> Self::T {(0.into(), 0.into())}fn upe() -> Self::U { // identity for upop(1.into(), 0.into())}}#[allow(dead_code)]fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }fn upd(n: usize, st: &mut LazySegTree<Affine>, l: usize, r: usize, x: MInt) {if l <= r {st.update(l, r + 1, (0.into(), x));} else {st.update(l, n, (0.into(), x));st.update(0, r + 1, (0.into(), x));}}fn que(n: usize, st: &mut LazySegTree<Affine>, l: usize, r: usize) -> MInt {if l <= r {st.query(l, r + 1).0} else {let a = st.query(l, n).0;let b = st.query(0, r + 1).0;a + b}}fn solve() {let n: usize = get();let a: Vec<i64> = (0..n).map(|_| get()).collect();let q: usize = get();let mut st = vec![LazySegTree::<Affine>::new(n); 4];for i in 0..n {let b = MInt::new(a[i]);let mut c = b;for j in 0..4 {st[j].set(i, (c, 1.into()));c *= b;}}let comb = vec![vec![1],vec![1, 1],vec![1, 2, 1],vec![1, 3, 3, 1],vec![1, 4, 6, 4, 1],];for _ in 0..q {let ty: usize = get();let u = get::<usize>() - 1;let v = get::<usize>() - 1;let w = get::<usize>() - 1;let (u, v) = if u > v { (v, u) } else { (u, v) };let (l, r) = if u < w && w < v {(u, v)} else {(v, u)};if ty == 0 {let b: i64 = get();let b = MInt::new(b);let mut c = b;for i in 0..4 {upd(n, &mut st[i], l, r, c);c *= b;}} else {let len = (r + n - l) % n + 1;let len = len as i64;let leninv = MInt::new(len).inv();let mut ans = MInt::new(0);let avg = -que(n, &mut st[0], l, r) * leninv;let mut c = MInt::new(1);for i in (0..ty + 1).rev() {let tmp = if i == 0 {MInt::new(len)} else {que(n, &mut st[i - 1], l, r)} * comb[ty][i] * c;ans += tmp;c *= avg;}println!("{}", ans * leninv);}}}fn main() {// In order to avoid potential stack overflow, spawn a new thread.let stack_size = 104_857_600; // 100 MBlet thd = std::thread::Builder::new().stack_size(stack_size);thd.spawn(|| solve()).unwrap().join().unwrap();}