結果

問題 No.1783 Remix Sum
ユーザー PachicobuePachicobue
提出日時 2021-12-12 22:24:28
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
RE  
実行時間 -
コード長 25,998 bytes
コンパイル時間 2,871 ms
コンパイル使用メモリ 231,500 KB
実行使用メモリ 50,552 KB
最終ジャッジ日時 2024-07-21 10:48:17
合計ジャッジ時間 46,423 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 RE -
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 RE -
testcase_04 AC 257 ms
5,740 KB
testcase_05 AC 173 ms
5,612 KB
testcase_06 RE -
testcase_07 RE -
testcase_08 RE -
testcase_09 RE -
testcase_10 AC 174 ms
5,488 KB
testcase_11 AC 91 ms
5,376 KB
testcase_12 RE -
testcase_13 RE -
testcase_14 RE -
testcase_15 RE -
testcase_16 RE -
testcase_17 RE -
testcase_18 AC 91 ms
5,376 KB
testcase_19 RE -
testcase_20 RE -
testcase_21 RE -
testcase_22 RE -
testcase_23 RE -
testcase_24 RE -
testcase_25 RE -
testcase_26 RE -
testcase_27 RE -
testcase_28 RE -
testcase_29 RE -
testcase_30 RE -
testcase_31 RE -
testcase_32 RE -
testcase_33 RE -
testcase_34 RE -
testcase_35 RE -
testcase_36 RE -
testcase_37 RE -
testcase_38 RE -
testcase_39 RE -
testcase_40 RE -
testcase_41 RE -
testcase_42 RE -
testcase_43 RE -
testcase_44 AC 6,773 ms
37,240 KB
testcase_45 RE -
testcase_46 RE -
testcase_47 RE -
testcase_48 RE -
testcase_49 RE -
testcase_50 AC 6,773 ms
37,236 KB
testcase_51 RE -
testcase_52 RE -
testcase_53 RE -
testcase_54 RE -
testcase_55 RE -
testcase_56 AC 9,575 ms
50,552 KB
testcase_57 RE -
testcase_58 RE -
testcase_59 RE -
testcase_60 RE -
testcase_61 RE -
testcase_62 AC 6,784 ms
37,240 KB
testcase_63 RE -
testcase_64 RE -
testcase_65 RE -
testcase_66 RE -
testcase_67 RE -
testcase_68 AC 686 ms
7,928 KB
testcase_69 RE -
testcase_70 RE -
testcase_71 RE -
testcase_72 RE -
testcase_73 RE -
testcase_74 AC 602 ms
7,544 KB
testcase_75 RE -
testcase_76 RE -
testcase_77 RE -
testcase_78 RE -
testcase_79 RE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
/**
 * 上位は1の10乗根でアダマール変換をして、下位はNTTする?
 * 多変数FPSでexp.logを経てM乗を計算?
 * 
 * X=(x_0,x_1,...,x_{T-1}), Y=(x_T,x_{T+1},...,x_{K-1})
 * f(X,Y) = 上位K-T桁がYで、下位T桁がXである通り数みたいなFPS
 * Xについてはmultivariate convolution, YについてはF_10 plus convolution
 * https://nyaannyaan.github.io/library/ntt/multivariate-multiplication.hpp
 */
#pragma region Header
using i32 = int;
using u32 = unsigned int;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
using f64 = double;
using f80 = long double;
using f128 = __float128;
constexpr i32 operator"" _i32(u64 v)
{
    return v;
}
constexpr i32 operator"" _u32(u64 v)
{
    return v;
}
constexpr i64 operator"" _i64(u64 v)
{
    return v;
}
constexpr u64 operator"" _u64(u64 v)
{
    return v;
}
constexpr f64 operator"" _f64(f80 v)
{
    return v;
}
constexpr f80 operator"" _f80(f80 v)
{
    return v;
}
using Istream = std::istream;
using Ostream = std::ostream;
using Str = std::string;
template<typename T>
using Lt = std::less<T>;
template<typename T>
using Gt = std::greater<T>;
template<typename T>
using IList = std::initializer_list<T>;
template<int n>
using BSet = std::bitset<n>;
template<typename T1, typename T2>
using Pair = std::pair<T1, T2>;
template<typename... Ts>
using Tup = std::tuple<Ts...>;
template<typename T, int N>
using Arr = std::array<T, N>;
template<typename... Ts>
using Deq = std::deque<Ts...>;
template<typename... Ts>
using Set = std::set<Ts...>;
template<typename... Ts>
using MSet = std::multiset<Ts...>;
template<typename... Ts>
using USet = std::unordered_set<Ts...>;
template<typename... Ts>
using UMSet = std::unordered_multiset<Ts...>;
template<typename... Ts>
using Map = std::map<Ts...>;
template<typename... Ts>
using MMap = std::multimap<Ts...>;
template<typename... Ts>
using UMap = std::unordered_map<Ts...>;
template<typename... Ts>
using UMMap = std::unordered_multimap<Ts...>;
template<typename... Ts>
using Vec = std::vector<Ts...>;
template<typename... Ts>
using Stack = std::stack<Ts...>;
template<typename... Ts>
using Queue = std::queue<Ts...>;
template<typename T>
using MaxHeap = std::priority_queue<T>;
template<typename T>
using MinHeap = std::priority_queue<T, Vec<T>, Gt<T>>;
using NSec = std::chrono::nanoseconds;
using USec = std::chrono::microseconds;
using MSec = std::chrono::milliseconds;
using Sec = std::chrono::seconds;
template<typename T>
constexpr T LIMMIN = std::numeric_limits<T>::min();
template<typename T>
constexpr T LIMMAX = std::numeric_limits<T>::max();
template<typename T>
constexpr T INF = (LIMMAX<T> - 1) / 2;
template<typename T>
constexpr T PI = T{3.141592653589793238462643383279502884};
template<typename T = u64>
constexpr T TEN(const int n)
{
    return n == 0 ? T{1} : TEN<T>(n - 1) * T{10};
}
Ostream& operator<<(Ostream& os, i128 v)
{
    bool minus = false;
    if (v < 0) { minus = true, v = -v; }
    Str ans;
    if (v == 0) { ans = "0"; }
    while (v) {
        ans.push_back('0' + v % 10), v /= 10;
    }
    std::reverse(ans.begin(), ans.end());
    return os << (minus ? "-" : "") << ans;
}
Ostream& operator<<(Ostream& os, u128 v)
{
    Str ans;
    if (v == 0) { ans = "0"; }
    while (v) {
        ans.push_back('0' + v % 10), v /= 10;
    }
    std::reverse(ans.begin(), ans.end());
    return os << ans;
}
template<typename T>
bool chmin(T& a, const T& b)
{
    if (a > b) {
        a = b;
        return true;
    } else {
        return false;
    }
}
template<typename T>
bool chmax(T& a, const T& b)
{
    if (a < b) {
        a = b;
        return true;
    } else {
        return false;
    }
}
template<typename T>
constexpr T floorDiv(T x, T y)
{
    if (y < T{}) { x = -x, y = -y; }
    return x >= T{} ? x / y : (x - y + 1) / y;
}
template<typename T>
constexpr T ceilDiv(T x, T y)
{
    if (y < T{}) { x = -x, y = -y; }
    return x >= T{} ? (x + y - 1) / y : x / y;
}
template<typename T, typename I>
constexpr T modPower(T v, I n, T mod)
{
    T ans = 1 % mod;
    for (; n > 0; n >>= 1, (v *= v) %= mod) {
        if (n % 2 == 1) { (ans *= v) %= mod; }
    }
    return ans;
}
template<typename T, typename I>
constexpr T power(T v, I n)
{
    T ans = 1;
    for (; n > 0; n >>= 1, v *= v) {
        if (n % 2 == 1) { ans *= v; }
    }
    return ans;
}
template<typename T, typename I>
constexpr T power(T v, I n, const T& e)
{
    T ans = e;
    for (; n > 0; n >>= 1, v *= v) {
        if (n % 2 == 1) { ans *= v; }
    }
    return ans;
}
template<typename T>
Vec<T> operator+=(Vec<T>& vs1, const Vec<T>& vs2)
{
    vs1.insert(vs1.end(), vs2.begin(), vs2.end());
    return vs1;
}
template<typename T>
Vec<T> operator+(const Vec<T>& vs1, const Vec<T>& vs2)
{
    auto vs = vs1;
    vs += vs2;
    return vs;
}
template<typename Vs, typename V>
void fillAll(Vs& arr, const V& v)
{
    if constexpr (std::is_convertible<V, Vs>::value) {
        arr = v;
    } else {
        for (auto& subarr : arr) {
            fillAll(subarr, v);
        }
    }
}
template<typename Vs>
void sortAll(Vs& vs)
{
    std::sort(std::begin(vs), std::end(vs));
}
template<typename Vs, typename C>
void sortAll(Vs& vs, C comp)
{
    std::sort(std::begin(vs), std::end(vs), comp);
}
template<typename Vs>
void reverseAll(Vs& vs)
{
    std::reverse(std::begin(vs), std::end(vs));
}
template<typename V, typename Vs>
V sumAll(const Vs& vs)
{
    if constexpr (std::is_convertible<Vs, V>::value) {
        return static_cast<V>(vs);
    } else {
        V ans = 0;
        for (const auto& v : vs) {
            ans += sumAll<V>(v);
        }
        return ans;
    }
}
template<typename Vs>
int minInd(const Vs& vs)
{
    return std::min_element(std::begin(vs), std::end(vs)) - std::begin(vs);
}
template<typename Vs>
int maxInd(const Vs& vs)
{
    return std::max_element(std::begin(vs), std::end(vs)) - std::begin(vs);
}
template<typename Vs, typename V>
int lbInd(const Vs& vs, const V& v)
{
    return std::lower_bound(std::begin(vs), std::end(vs), v) - std::begin(vs);
}
template<typename Vs, typename V>
int ubInd(const Vs& vs, const V& v)
{
    return std::upper_bound(std::begin(vs), std::end(vs), v) - std::begin(vs);
}
template<typename T, typename F>
Vec<T> genVec(int n, F gen)
{
    Vec<T> ans;
    std::generate_n(std::back_insert_iterator(ans), n, gen);
    return ans;
}
Vec<int> iotaVec(int n, int offset = 0)
{
    Vec<int> ans(n);
    std::iota(ans.begin(), ans.end(), offset);
    return ans;
}
constexpr int popcount(const u64 v)
{
    return v ? __builtin_popcountll(v) : 0;
}
constexpr int log2p1(const u64 v)
{
    return v ? 64 - __builtin_clzll(v) : 0;
}
constexpr int lsbp1(const u64 v)
{
    return __builtin_ffsll(v);
}
constexpr int clog(const u64 v)
{
    return v ? log2p1(v - 1) : 0;
}
constexpr u64 ceil2(const u64 v)
{
    const int l = clog(v);
    return (l == 64) ? 0_u64 : (1_u64 << l);
}
constexpr u64 floor2(const u64 v)
{
    return v ? (1_u64 << (log2p1(v) - 1)) : 0_u64;
}
constexpr bool ispow2(const u64 v)
{
    return (v > 0) and ((v & (v - 1)) == 0);
}
constexpr bool btest(const u64 mask, const int ind)
{
    return (mask >> ind) & 1_u64;
}
template<typename F>
struct Fix : F
{
    Fix(F&& f) : F{std::forward<F>(f)} {}
    template<typename... Args>
    auto operator()(Args&&... args) const
    {
        return F::operator()(*this, std::forward<Args>(args)...);
    }
};
class irange
{
private:
    struct itr
    {
        itr(i64 start = 0, i64 step = 1) : m_cnt{start}, m_step{step} {}
        bool operator!=(const itr& it) const
        {
            return m_cnt != it.m_cnt;
        }
        int operator*()
        {
            return m_cnt;
        }
        itr& operator++()
        {
            m_cnt += m_step;
            return *this;
        }
        i64 m_cnt, m_step;
    };
    i64 m_start, m_end, m_step;
public:
    irange(i64 start, i64 end, i64 step = 1)
    {
        assert(step != 0);
        const i64 d = std::abs(step);
        const i64 l = (step > 0 ? start : end);
        const i64 r = (step > 0 ? end : start);
        int n = (r - l) / d + ((r - l) % d ? 1 : 0);
        if (l >= r) { n = 0; }
        m_start = start;
        m_end = start + step * n;
        m_step = step;
    }
    itr begin() const
    {
        return itr{m_start, m_step};
    }
    itr end() const
    {
        return itr{m_end, m_step};
    }
};
irange rep(int end)
{
    return irange(0, end, 1);
}
irange per(int rend)
{
    return irange(rend - 1, -1, -1);
}
#pragma COMMENT("[REFS] Xoshiro: https://prng.di.unimi.it")
namespace xoshiro_impl {
u64 x;
u64 next()
{
    uint64_t z = (x += 0x9e3779b97f4a7c15);
    z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9;
    z = (z ^ (z >> 27)) * 0x94d049bb133111eb;
    return z ^ (z >> 31);
}
} // namespace xoshiro_impl
class Xoshiro32
{
public:
    using result_type = u32;
    using T = result_type;
    Xoshiro32(T seed = 0)
    {
        xoshiro_impl::x = seed;
        s[0] = xoshiro_impl::next();
        s[1] = xoshiro_impl::next();
        s[2] = xoshiro_impl::next();
        s[3] = xoshiro_impl::next();
    }
    static constexpr T min()
    {
        return LIMMIN<T>;
    }
    static constexpr T max()
    {
        return LIMMAX<T>;
    }
    T operator()()
    {
        return next();
    }
private:
    static constexpr T rotl(const T x, int k)
    {
        return (x << k) | (x >> (32 - k));
    }
    T next()
    {
        const T ans = rotl(s[1] * 5, 7) * 9;
        const T t = s[1] << 9;
        s[2] ^= s[0];
        s[3] ^= s[1];
        s[1] ^= s[2];
        s[0] ^= s[3];
        s[2] ^= t;
        s[3] = rotl(s[3], 11);
        return ans;
    }
    T s[4];
};
class Xoshiro64
{
public:
    using result_type = u64;
    using T = result_type;
    Xoshiro64(T seed = 0)
    {
        xoshiro_impl::x = seed;
        s[0] = xoshiro_impl::next();
        s[1] = xoshiro_impl::next();
        s[2] = xoshiro_impl::next();
        s[3] = xoshiro_impl::next();
    }
    static constexpr T min()
    {
        return LIMMIN<T>;
    }
    static constexpr T max()
    {
        return LIMMAX<T>;
    }
    T operator()()
    {
        return next();
    }
private:
    static constexpr T rotl(const T x, int k)
    {
        return (x << k) | (x >> (64 - k));
    }
    T next()
    {
        const T ans = rotl(s[1] * 5, 7) * 9;
        const T t = s[1] << 17;
        s[2] ^= s[0];
        s[3] ^= s[1];
        s[1] ^= s[2];
        s[0] ^= s[3];
        s[2] ^= t;
        s[3] = rotl(s[3], 45);
        return ans;
    }
    T s[4];
};
template<typename Rng>
class RNG
{
public:
    using result_type = typename Rng::result_type;
    using T = result_type;
    static constexpr T min()
    {
        return Rng::min();
    }
    static constexpr T max()
    {
        return Rng::max();
    }
    RNG() : RNG(std::random_device{}()) {}
    RNG(T seed) : m_rng(seed) {}
    T operator()()
    {
        return m_rng();
    }
    template<typename T>
    T val(T min, T max)
    {
        return std::uniform_int_distribution<T>(min, max)(m_rng);
    }
    template<typename T>
    Pair<T, T> pair(T min, T max)
    {
        return std::minmax({val<T>(min, max), val<T>(min, max)});
    }
    template<typename T>
    Vec<T> vec(int n, T min, T max)
    {
        return genVec<T>(n, [&]() { return val<T>(min, max); });
    }
    template<typename T>
    Vec<Vec<T>> vvec(int n, int m, T min, T max)
    {
        return genVec<Vec<T>>(n, [&]() { return vec(m, min, max); });
    }
private:
    Rng m_rng;
};
RNG<std::mt19937> rng;
RNG<std::mt19937_64> rng64;
RNG<Xoshiro32> rng_xo;
RNG<Xoshiro64> rng_xo64;
class Scanner
{
public:
    Scanner(Istream& is = std::cin) : m_is{is}
    {
        m_is.tie(nullptr)->sync_with_stdio(false);
    }
    template<typename T>
    T val()
    {
        T v;
        return m_is >> v, v;
    }
    template<typename T>
    T val(T offset)
    {
        return val<T>() - offset;
    }
    template<typename T>
    Vec<T> vec(int n)
    {
        return genVec<T>(n, [&]() { return val<T>(); });
    }
    template<typename T>
    Vec<T> vec(int n, T offset)
    {
        return genVec<T>(n, [&]() { return val<T>(offset); });
    }
    template<typename T>
    Vec<Vec<T>> vvec(int n, int m)
    {
        return genVec<Vec<T>>(n, [&]() { return vec<T>(m); });
    }
    template<typename T>
    Vec<Vec<T>> vvec(int n, int m, const T offset)
    {
        return genVec<Vec<T>>(n, [&]() { return vec<T>(m, offset); });
    }
    template<typename... Args>
    auto tup()
    {
        return Tup<Args...>{val<Args>()...};
    }
    template<typename... Args>
    auto tup(const Args&... offsets)
    {
        return Tup<Args...>{val<Args>(offsets)...};
    }
private:
    Istream& m_is;
};
Scanner in;
class Printer
{
public:
    Printer(Ostream& os = std::cout) : m_os{os}
    {
        m_os << std::fixed << std::setprecision(15);
    }
    template<typename... Args>
    int operator()(const Args&... args)
    {
        dump(args...);
        return 0;
    }
    template<typename... Args>
    int ln(const Args&... args)
    {
        dump(args...), m_os << '\n';
        return 0;
    }
    template<typename... Args>
    int el(const Args&... args)
    {
        dump(args...), m_os << std::endl;
        return 0;
    }
private:
    template<typename T>
    void dump(const T& v)
    {
        m_os << v;
    }
    template<typename T>
    void dump(const Vec<T>& vs)
    {
        for (const int i : rep(vs.size())) {
            m_os << (i ? " " : ""), dump(vs[i]);
        }
    }
    template<typename T>
    void dump(const Vec<Vec<T>>& vss)
    {
        for (const int i : rep(vss.size())) {
            m_os << (i ? "\n" : ""), dump(vss[i]);
        }
    }
    template<typename T, typename... Ts>
    int dump(const T& v, const Ts&... args)
    {
        dump(v), m_os << ' ', dump(args...);
        return 0;
    }
    Ostream& m_os;
};
Printer out;
template<typename T, int n, int i = 0>
auto ndVec(int const (&szs)[n], const T x = T{})
{
    if constexpr (i == n) {
        return x;
    } else {
        return std::vector(szs[i], ndVec<T, n, i + 1>(szs, x));
    }
}
template<u32 mod_, u32 root_, u32 max2p_>
class modint
{
    template<typename U = u32&>
    static U modRef()
    {
        static u32 s_mod = 0;
        return s_mod;
    }
    template<typename U = u32&>
    static U rootRef()
    {
        static u32 s_root = 0;
        return s_root;
    }
    template<typename U = u32&>
    static U max2pRef()
    {
        static u32 s_max2p = 0;
        return s_max2p;
    }
public:
    template<typename U = const u32>
    static constexpr std::enable_if_t<mod_ != 0, U> mod()
    {
        return mod_;
    }
    template<typename U = const u32>
    static std::enable_if_t<mod_ == 0, U> mod()
    {
        return modRef();
    }
    template<typename U = const u32>
    static constexpr std::enable_if_t<mod_ != 0, U> root()
    {
        return root_;
    }
    template<typename U = const u32>
    static std::enable_if_t<mod_ == 0, U> root()
    {
        return rootRef();
    }
    template<typename U = const u32>
    static constexpr std::enable_if_t<mod_ != 0, U> max2p()
    {
        return max2p_;
    }
    template<typename U = const u32>
    static std::enable_if_t<mod_ == 0, U> max2p()
    {
        return max2pRef();
    }
    template<typename U = u32>
    static void setMod(std::enable_if_t<mod_ == 0, U> m)
    {
        modRef() = m;
    }
    template<typename U = u32>
    static void setRoot(std::enable_if_t<mod_ == 0, U> r)
    {
        rootRef() = r;
    }
    template<typename U = u32>
    static void setMax2p(std::enable_if_t<mod_ == 0, U> m)
    {
        max2pRef() = m;
    }
    constexpr modint() : m_val{0} {}
    constexpr modint(i64 v) : m_val{normll(v)} {}
    constexpr void setRaw(u32 v)
    {
        m_val = v;
    }
    constexpr modint operator-() const
    {
        return modint{0} - (*this);
    }
    constexpr modint& operator+=(const modint& m)
    {
        m_val = norm(m_val + m.val());
        return *this;
    }
    constexpr modint& operator-=(const modint& m)
    {
        m_val = norm(m_val + mod() - m.val());
        return *this;
    }
    constexpr modint& operator*=(const modint& m)
    {
        m_val = normll((i64)m_val * (i64)m.val() % (i64)mod());
        return *this;
    }
    constexpr modint& operator/=(const modint& m)
    {
        return *this *= m.inv();
    }
    constexpr modint operator+(const modint& m) const
    {
        auto v = *this;
        return v += m;
    }
    constexpr modint operator-(const modint& m) const
    {
        auto v = *this;
        return v -= m;
    }
    constexpr modint operator*(const modint& m) const
    {
        auto v = *this;
        return v *= m;
    }
    constexpr modint operator/(const modint& m) const
    {
        auto v = *this;
        return v /= m;
    }
    constexpr bool operator==(const modint& m) const
    {
        return m_val == m.val();
    }
    constexpr bool operator!=(const modint& m) const
    {
        return not(*this == m);
    }
    friend Istream& operator>>(Istream& is, modint& m)
    {
        i64 v;
        return is >> v, m = v, is;
    }
    friend Ostream& operator<<(Ostream& os, const modint& m)
    {
        return os << m.val();
    }
    constexpr u32 val() const
    {
        return m_val;
    }
    template<typename I>
    constexpr modint pow(I n) const
    {
        return power(*this, n);
    }
    constexpr modint inv() const
    {
        return pow(mod() - 2);
    }
    static modint sinv(u32 n)
    {
        static Vec<modint> is{1, 1};
        for (u32 i = (u32)is.size(); i <= n; i++) {
            is.push_back(-is[mod() % i] * (mod() / i));
        }
        return is[n];
    }
    static modint fact(u32 n)
    {
        static Vec<modint> fs{1, 1};
        for (u32 i = (u32)fs.size(); i <= n; i++) {
            fs.push_back(fs.back() * i);
        }
        return fs[n];
    }
    static modint ifact(u32 n)
    {
        static Vec<modint> ifs{1, 1};
        for (u32 i = (u32)ifs.size(); i <= n; i++) {
            ifs.push_back(ifs.back() * sinv(i));
        }
        return ifs[n];
    }
    static modint comb(int n, int k)
    {
        return k > n or k < 0 ? modint{0} : fact(n) * ifact(n - k) * ifact(k);
    }
private:
    static constexpr u32 norm(u32 x)
    {
        return x < mod() ? x : x - mod();
    }
    static constexpr u32 normll(i64 x)
    {
        return norm(u32(x % (i64)mod() + (i64)mod()));
    }
    u32 m_val;
};
using modint_1000000007 = modint<1000000007, 5, 1>;
using modint_998244353 = modint<998244353, 3, 23>;
template<int id>
using modint_dynamic = modint<0, 0, id>;
#pragma endregion
constexpr int D = 10;
constexpr int Ds[] = {1, 10, 100, 1000, 10000, 100000};
constexpr int ls[] = {0, 4, 7, 10, 14, 17};
constexpr int Ls[] = {1, 16, 128, 1024, 16384, 131072};
constexpr u32 MOD = (1_u32 << 20) * 115 + 1;
constexpr u32 ROOT = 6;
constexpr u32 MAX2P = 20;
using mint = modint<MOD, ROOT, MAX2P>;
const mint omega_10 = mint(ROOT).pow((MOD - 1) / 10);
const mint omega_10s[] = {1,
                          omega_10,
                          omega_10.pow(2),
                          omega_10.pow(3),
                          omega_10.pow(4),
                          omega_10.pow(5),
                          omega_10.pow(6),
                          omega_10.pow(7),
                          omega_10.pow(8),
                          omega_10.pow(9)};
const mint i_omega_10 = omega_10.inv();
const mint i_omega_10s[] = {1,
                            i_omega_10,
                            i_omega_10.pow(2),
                            i_omega_10.pow(3),
                            i_omega_10.pow(4),
                            i_omega_10.pow(5),
                            i_omega_10.pow(6),
                            i_omega_10.pow(7),
                            i_omega_10.pow(8),
                            i_omega_10.pow(9)};
i64 M;
int K; // 桁数
int T; // (mod x^D)で計算する桁数、残りは(mod x^D-1)で計算
int X; // ceil2(D^T)
int lx; // log2(X)
int Y; // D^(K-T)
int ly; // log10(Y)=K-T
/**
 * Xの関数としてNTT
 */
void ntt(Vec<Vec<mint>>& f, bool rev)
{
    assert((int)f.size() == X);
    assert((int)f[0].size() == Y);
    static Vec<mint> rs, irs;
    if (rs.empty()) {
        const mint r = mint(mint::root()), ir = r.inv();
        rs.resize(mint::max2p() + 1), irs.resize(mint::max2p() + 1);
        rs.back() = -r.pow((mint::mod() - 1) >> mint::max2p()),
        irs.back() = -ir.pow((mint::mod() - 1) >> mint::max2p());
        for (u32 i : irange(mint::max2p(), 0, -1)) {
            rs[i - 1] = -(rs[i] * rs[i]);
            irs[i - 1] = -(irs[i] * irs[i]);
        }
    }
    const auto drange = (rev ? irange(0, lx, 1) : irange(lx - 1, -1, -1));
    for (const int d : drange) {
        const int width = 1 << d;
        mint e = 1;
        for (int i = 0, j = 1; i < X; i += width * 2, j++) {
            for (int l = i, r = i + width; l < i + width; l++, r++) {
                for (int y : rep(Y)) {
                    if (rev) {
                        const mint v1 = f[l][y], v2 = f[r][y];
                        f[l][y] = v1 + v2, f[r][y] = (v1 - v2) * e;
                    } else {
                        const mint v1 = f[l][y], v2 = f[r][y] * e;
                        f[l][y] = v1 + v2, f[r][y] = v1 - v2;
                    }
                }
            }
            e *= (rev ? irs : rs)[lsbp1(j) + 1];
        }
    }
    if (rev) {
        const mint iN = mint{X}.inv();
        for (auto& as : f) {
            for (auto& a : as) {
                a *= iN;
            }
        }
    }
}
/* xにおけるbaseに対応する桁 */
int btest_10(int x, int base)
{
    return (x / base) % D;
}
/**
 * Yの関数としてFHT_10する
 */
void fht_10(Vec<Vec<mint>>& f, bool rev)
{
    assert((int)f.size() == X);
    assert((int)f[0].size() == Y);
    for (int delta = 1; delta < Y; delta *= D) {
        for (int j : rep(Y)) {
            if (btest_10(j, delta) == 0) {
                for (int x : rep(X)) {
                    Vec<mint> dps(D);
                    for (int k : rep(D)) {
                        dps[k] = f[x][j + delta * k];
                        f[x][j + delta * k] = 0;
                    }
                    for (int k : rep(D)) {
                        for (int l : rep(D)) {
                            f[x][j + delta * k]
                                += (rev ? i_omega_10s[(k * l) % D]
                                        : omega_10s[(k * l) % D])
                                   * dps[l];
                        }
                    }
                }
            }
        }
    }
    if (rev) {
        const mint iN = mint(Y).inv();
        for (auto& as : f) {
            for (auto& a : as) {
                a *= iN;
            }
        }
    }
}
/**
 * f(X,Y)を変換する
 */
void trans(Vec<Vec<mint>>& f, bool rev)
{
    assert((int)f.size() == X);
    assert((int)f[0].size() == Y);
    ntt(f, rev);
    fht_10(f, rev);
}
/**
 * f(X,Y)*g(X,Y) 
 */
Vec<Vec<mint>> multi_mul(const Vec<Vec<mint>>& f, const Vec<Vec<mint>>& g)
{
    assert((int)f.size() == X);
    assert((int)f[0].size() == Y);
    assert((int)g.size() == X);
    assert((int)g[0].size() == Y);
    if (T == 0) {
        // 全部FHT_10
        auto F = f, G = g;
        trans(F, false);
        trans(G, false);
        for (int x : rep(X)) {
            for (int y : rep(Y)) {
                F[x][y] *= G[x][y];
            }
        }
        trans(F, true);
        return F;
    } else {
        Vec<int> chi(X, 0);
        for (int x : rep(X)) {
            for (int k : irange(1, T)) {
                chi[x] += x / Ds[k];
            }
            chi[x] %= T; // mod (t^T-1)
        }
        auto F = ndVec<mint>({T, X, Y}, 0);
        auto G = ndVec<mint>({T, X, Y}, 0);
        for (int x : rep(X)) {
            for (int y : rep(Y)) {
                F[chi[x]][x][y] += f[x][y];
                G[chi[x]][x][y] += g[x][y];
            }
        }
        for (int k : rep(T)) {
            trans(F[k], false);
            trans(G[k], false);
        }
        // F(t),G(t)の各点積
        for (int x : rep(X)) {
            for (int y : rep(Y)) {
                Vec<mint> H_xy(T, 0);
                // H_xy(t) = F_xy(t)*G_xy(t) mod (t^T-1)
                for (int ki : rep(T)) {
                    for (int kj : rep(T)) {
                        H_xy[(ki + kj) % T] += F[ki][x][y] * G[kj][x][y];
                    }
                }
                for (int k : rep(T)) {
                    F[k][x][y] = H_xy[k];
                }
            }
        }
        for (int k : rep(T)) {
            trans(F[k], true);
        }
        auto h = ndVec<mint>({X, Y}, 0);
        for (int x : rep(X)) {
            for (int y : rep(Y)) {
                h[x][y] += F[chi[x]][x][y];
            }
        }
        return h;
    }
}
/**
 * f(X,Y)^M 
 */
Vec<Vec<mint>> multi_pow(Vec<Vec<mint>> f, i64 M)
{
    if (M == 1) {
        return f;
    } else if (M % 2 == 0) {
        return multi_pow(multi_mul(f, f), M / 2);
    } else {
        return multi_mul(f, multi_pow(f, M - 1));
    }
}
int main()
{
    int N;
    std::tie(N, K, M, T) = in.tup<int, int, i64, int>();
    assert(T == 0);
    X = Ls[T];
    lx = ls[T];
    assert(X == (1 << lx));
    Y = Ds[K - T];
    ly = K - T;
    const auto as = in.vec<int>(N);
    auto f = ndVec<mint>({X, Y}, 0);
    for (int i : rep(N)) {
        const int x = as[i] % Ds[T];
        const int y = as[i] / Ds[T];
        f[x][y] += 1;
    }
    const auto g = multi_pow(f, M);
    void(0);
    Vec<mint> ans(Ds[K], 0);
    for (int x : rep(Ds[T])) {
        for (int y : rep(Ds[K - T])) {
            ans[y * Ds[T] + x] += g[x][y];
        }
    }
    for (auto an : ans) {
        out.ln(an);
    }
    return 0;
}
0