結果
問題 | No.1781 LCM |
ユーザー | 👑 Nachia |
提出日時 | 2021-12-16 00:32:03 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 4,089 ms / 5,000 ms |
コード長 | 6,520 bytes |
コンパイル時間 | 1,122 ms |
コンパイル使用メモリ | 91,232 KB |
実行使用メモリ | 10,624 KB |
最終ジャッジ日時 | 2024-05-01 21:34:57 |
合計ジャッジ時間 | 28,017 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 4 ms
5,376 KB |
testcase_02 | AC | 3 ms
5,376 KB |
testcase_03 | AC | 4 ms
5,376 KB |
testcase_04 | AC | 4 ms
5,376 KB |
testcase_05 | AC | 3 ms
5,376 KB |
testcase_06 | AC | 4 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 3 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 3 ms
5,376 KB |
testcase_14 | AC | 3 ms
5,376 KB |
testcase_15 | AC | 3 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 4,057 ms
10,624 KB |
testcase_22 | AC | 4,063 ms
10,496 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 4,060 ms
10,624 KB |
testcase_26 | AC | 4,089 ms
10,624 KB |
testcase_27 | AC | 4,030 ms
10,624 KB |
testcase_28 | AC | 3,440 ms
9,856 KB |
testcase_29 | AC | 927 ms
5,760 KB |
testcase_30 | AC | 973 ms
5,888 KB |
testcase_31 | AC | 2 ms
5,376 KB |
testcase_32 | AC | 2 ms
5,376 KB |
ソースコード
#include <vector> #include <utility> #include <atcoder/modint> const unsigned int MOD = 998244353; long long N, M; std::vector<atcoder::static_modint<MOD>> precalc; class CompletelyMultiplicativePrefixSum{ public: using E = atcoder::static_modint<MOD>; using vecE = std::vector<E>; using i64 = long long; static std::pair<vecE, vecE> primesafe_sum(i64 n, i64 floor_sqrt_n){ vecE fairies(floor_sqrt_n+1, 0); for(i64 i=0; i<=floor_sqrt_n; i++) fairies[i] = precalc[1] * i; vecE devils(floor_sqrt_n+1, 0); for(i64 i=1; i<=floor_sqrt_n; i++) devils[i] = precalc[1] * (n/i); return std::make_pair(std::move(fairies), std::move(devils)); } static E primesafe_linearity_over_primepower(E fx, i64 pp){ return fx; } static E optional_multiplicative_function(i64 p, i64 e){ return precalc[e]; } private: i64 n; i64 sqrtn; std::vector<int> isprime_table; vecE primesafe_fairy; vecE fairies; vecE devils; CompletelyMultiplicativePrefixSum(i64 maxval){ n = maxval; sqrtn = 0; while(sqrtn * sqrtn <= n) sqrtn++; sqrtn--; isprime_table.assign(sqrtn+1, 1); isprime_table[0] = isprime_table[1] = 0; { auto res_primesafe = primesafe_sum(n, sqrtn); fairies = std::move(res_primesafe.first); devils = std::move(res_primesafe.second); primesafe_fairy = fairies; for(int i=sqrtn; i>=1; i--) primesafe_fairy[i] -= primesafe_fairy[i-1]; for(i64 p=2; p<=sqrtn; p++) fairies[p] -= fairies[1]; for(i64 p=1; p<=sqrtn; p++) devils[p] -= fairies[1]; fairies[1] = 0; primesafe_fairy[1] = 0; } for(i64 p=2; p<=sqrtn; p++){ if(isprime_table[p] == 0) continue; for(i64 i=p*p; i<=sqrtn; i+=p) isprime_table[i] = 0; E prime_count_p_minus1 = fairies[p-1]; for(i64 devil_id = 1; devil_id <= sqrtn; devil_id++){ if(devil_id * p <= sqrtn){ devils[devil_id] -= primesafe_linearity_over_primepower(devils[devil_id * p] - prime_count_p_minus1, p); } else{ i64 tg_fairy = n / (devil_id * p); if(tg_fairy < p) break; devils[devil_id] -= primesafe_linearity_over_primepower(fairies[tg_fairy] - prime_count_p_minus1, p); } } for(i64 fairy_id = sqrtn/p; fairy_id >= p; fairy_id--){ E dc = primesafe_linearity_over_primepower(fairies[fairy_id] - prime_count_p_minus1, p); i64 max_tg = std::min(fairy_id * p + p - 1, sqrtn); for(i64 tg_fairy = fairy_id * p; tg_fairy <= max_tg; tg_fairy++) fairies[tg_fairy] -= dc; } } for(i64 p=sqrtn; p>=2; p--){ if(isprime_table[p] == 0) continue; E prime_count_p_minus1 = fairies[p-1]; for(i64 fairy_id = p; fairy_id <= sqrtn/p; fairy_id++){ E dc = (fairies[fairy_id] - prime_count_p_minus1) * primesafe_fairy[p]; i64 max_tg = std::min(fairy_id * p + p - 1, sqrtn); for(i64 tg_fairy = fairy_id * p; tg_fairy <= max_tg; tg_fairy++) fairies[tg_fairy] += dc; } for(i64 devil_id = std::min(sqrtn, n / (p*p)); devil_id >= 1; devil_id--){ if(devil_id * p <= sqrtn){ devils[devil_id] += (devils[devil_id * p] - prime_count_p_minus1) * primesafe_fairy[p]; } else{ i64 tg_fairy = n / (devil_id * p); devils[devil_id] += (fairies[tg_fairy] - prime_count_p_minus1) * primesafe_fairy[p]; } } } for(i64 p=1; p<=sqrtn; p++) fairies[p] += 1; for(i64 p=1; p<=sqrtn; p++) devils[p] += 1; } E interpolation_sum(){ vecE e_fairies(sqrtn+1, 0); vecE e_devils(sqrtn+1, 0); e_devils[1] = 1; std::vector<i64> power_p; power_p.resize(100); std::vector<E> coeff_diff; coeff_diff.resize(100); for(i64 p=2; p<=sqrtn; p++) if(isprime_table[p]){ power_p[1] = p; for(int e = 2; p <= n / power_p[e-1]; e++){ power_p[e] = power_p[e-1] * p; coeff_diff[e] = optional_multiplicative_function(p, e) - optional_multiplicative_function(p, e-1) * optional_multiplicative_function(p, 1); power_p[e+1] = n+1; } i64 max_fairy_id = sqrtn / power_p[2]; for(i64 fairy_id = power_p[2]; fairy_id <= sqrtn; fairy_id++){ i64 tg_fairy = fairy_id / power_p[2]; for(int e = 2; tg_fairy >= 1; e++, tg_fairy /= p){ e_fairies[tg_fairy] += e_fairies[fairy_id] * coeff_diff[e]; } } for(i64 devil_id = std::min(sqrtn, n / power_p[2]); devil_id >= 1; devil_id--){ i64 devil_size = n / (devil_id * power_p[2]); for(int e = 2; devil_size >= 1; e++, devil_size /= p){ if(devil_size > sqrtn) e_devils[n / devil_size] += e_devils[devil_id] * coeff_diff[e]; else e_fairies[devil_size] += e_devils[devil_id] * coeff_diff[e]; } } } E res = 0; for(i64 fairy_id = 1; fairy_id <= sqrtn; fairy_id++) res += fairies[fairy_id] * e_fairies[fairy_id]; for(i64 devil_id = 1; devil_id <= sqrtn; devil_id++) res += devils[devil_id] * e_devils[devil_id]; return res; } public: static std::pair<vecE, vecE> solve(long long n){ auto res = CompletelyMultiplicativePrefixSum(n); return std::make_pair(std::move(res.fairies), std::move(res.devils)); } static E solve_general_multiplicative_sum(long long n){ auto res = CompletelyMultiplicativePrefixSum(n); return res.interpolation_sum(); } }; #include <iostream> struct ios_do_not_sync{ ios_do_not_sync(){ std::ios::sync_with_stdio(false); std::cin.tie(nullptr); } } ios_do_not_sync_instance; int main() { std::cin >> N >> M; precalc.assign(100, 1); for(int e=0; e<=100; e++) precalc[e] = atcoder::static_modint<MOD>(e+1).pow(N); auto ans = CompletelyMultiplicativePrefixSum::solve_general_multiplicative_sum(M); std::cout << ans.val() << std::endl; return 0; }