結果
問題 | No.1787 Do Use Dynamic Tree |
ユーザー | 👑 Nachia |
提出日時 | 2021-12-16 20:46:18 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 9,485 bytes |
コンパイル時間 | 2,037 ms |
コンパイル使用メモリ | 137,500 KB |
実行使用メモリ | 52,476 KB |
最終ジャッジ日時 | 2024-09-13 18:47:37 |
合計ジャッジ時間 | 21,150 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 4 ms
5,376 KB |
testcase_13 | AC | 4 ms
5,376 KB |
testcase_14 | AC | 5 ms
5,376 KB |
testcase_15 | AC | 4 ms
5,376 KB |
testcase_16 | AC | 4 ms
5,376 KB |
testcase_17 | AC | 4 ms
5,376 KB |
testcase_18 | AC | 4 ms
5,376 KB |
testcase_19 | AC | 4 ms
5,376 KB |
testcase_20 | AC | 4 ms
5,376 KB |
testcase_21 | AC | 4 ms
5,376 KB |
testcase_22 | AC | 826 ms
34,276 KB |
testcase_23 | AC | 792 ms
49,196 KB |
testcase_24 | AC | 651 ms
30,132 KB |
testcase_25 | AC | 1,250 ms
52,476 KB |
testcase_26 | AC | 1,214 ms
52,352 KB |
testcase_27 | AC | 1,178 ms
52,316 KB |
testcase_28 | TLE | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
ソースコード
#include <atcoder/segtree> #include <iostream> #include <vector> #include <algorithm> using namespace std; struct heavy_light_decomposition{ private: int N; vector<int> P; vector<int> PP; vector<int> PD; vector<int> D; vector<int> I; vector<int> rangeL; vector<int> rangeR; public: heavy_light_decomposition(const vector<vector<int>>& E = {{}}){ N = E.size(); P.assign(N, -1); I = {0}; I.reserve(N); for(int i=0; i<I.size(); i++){ int p = I[i]; for(int e : E[p]) if(P[p] != e){ I.push_back(e); P[e] = p; } } vector<int> Z(N, 1); vector<int> nx(N, -1); PP.resize(N); for(int i=0; i<N; i++) PP[i] = i; for(int i=N-1; i>=1; i--){ int p = I[i]; Z[P[p]] += Z[p]; if(nx[P[p]] == -1) nx[P[p]] = p; if(Z[nx[P[p]]] < Z[p]) nx[P[p]] = p; } for(int p : I) if(nx[p] != -1) PP[nx[p]] = p; PD.assign(N,N); PD[0] = 0; D.assign(N,0); for(int p : I) if(p != 0){ PP[p] = PP[PP[p]]; PD[p] = min(PD[PP[p]], PD[P[p]]+1); D[p] = D[P[p]]+1; } rangeL.assign(N,0); rangeR.assign(N,0); vector<int> dfs; dfs.push_back(0); while(dfs.size()){ int p = dfs.back(); rangeR[p] = rangeL[p] + Z[p]; int ir = rangeR[p]; dfs.pop_back(); for(int e : E[p]) if(P[p] != e) if(e != nx[p]){ rangeL[e] = (ir -= Z[e]); dfs.push_back(e); } if(nx[p] != -1){ rangeL[nx[p]] = rangeL[p] + 1; dfs.push_back(nx[p]); } } I.resize(N); for(int i=0; i<N; i++) I[rangeL[i]] = i; } int depth(int p) const { return D[p]; } int lca(int u, int v) const { if(PD[u] < PD[v]) swap(u, v); while(PD[u] > PD[v]) u = P[PP[u]]; while(PP[u] != PP[v]){ u = P[PP[u]]; v = P[PP[v]]; } return (D[u] > D[v]) ? v : u; } int dist(int u, int v) const { return depth(u) + depth(v) - depth(lca(u,v)) * 2; } vector<pair<int,int>> path(int r, int c, bool include_root = true, bool reverse_path = false) const { vector<pair<int,int>> res; while(PD[r] < PD[c]){ res.push_back({ rangeL[PP[c]], rangeL[c]+1 }); c = P[PP[c]]; } if(PP[r] != PP[c]) return {}; if(D[r] > D[c]) return {}; res.push_back({ rangeL[r], rangeL[c]+1 }); if(!include_root){ res.back().first++; if(res.back().first == res.back().second) res.pop_back(); } if(!reverse_path) reverse(res.begin(),res.end()); return res; } const vector<int>& idxs() const { return rangeL; } const vector<int>& invidxs() const { return I; } int meet(int x, int y, int z) const { return lca(x,y) ^ lca(y,z) ^ lca(x,z); } int jump(int from, int to, int d) const { int g = lca(from,to); int dist0 = D[from] - D[g] * 2 + D[to]; if(dist0 > d) return -1; int p = from; if(D[from] - D[g] > d){ p = to; d = dist0 - d; } while(D[p] - D[PP[p]] > d){ d -= D[p] - D[PP[p]] + 1; p = P[PP[p]]; } return I[rangeL[p] - d]; } int heavy_path_child(int p){ int ip = rangeL[p]; if(ip == N-1) return -1; int cand = I[ip + 1]; if(PP[cand] != PP[p]) return -1; return cand; } int parent(int p){ return P[p]; } }; #include <iostream> #include <vector> #include <algorithm> #include <set> #include <map> #include <utility> using namespace std; #define rep(i,n) for(int i=0; i<(n); i++) namespace ruq { map<int,int> rq; void init(){ rq[-1] = 0; } int query(int p){ auto i = rq.upper_bound(p); i--; return i->second; } void apply(int l, int r, int updval){ if(l >= r) return; int lastval = query(l); auto i = rq.lower_bound(l); while(true){ if(i == rq.end()) break; if(r < i->first) break; lastval = i->second; i = rq.erase(i); } rq.insert(make_pair(l, updval)); rq.insert(make_pair(r, lastval)); } } int N; vector<int> A; vector<vector<int>> E; heavy_light_decomposition hld; vector<set<pair<int,int>, greater<pair<int,int>>>> children; vector<int> maxchild; vector<int> ismaxchild; namespace all_is_good_query{ using S = int; S op(S l, S r){ return l & r; } S e(){ return 1; } using rq = atcoder::segtree<S,op,e>; bool check(S x){ return x; } } all_is_good_query::rq isparentparentmax_rq; all_is_good_query::rq ismaxchild_rq; int is_parent_max(int p){ if(p == 0) return 0; if(maxchild[p] < 0) return 1; return (A[hld.parent(p)] > A[maxchild[p]]) ? 1 : 0; } int is_parent_parent_max(int p){ if(hld.depth(p) < 2) return 0; int pp = hld.parent(p); int ppp = hld.parent(pp); if(children[pp].size() <= 1) return 1; if(maxchild[pp] != p) return (A[ppp] > A[maxchild[pp]]) ? 1 : 0; auto i = children[pp].begin(); i++; return (A[ppp] > A[i->second]) ? 1 : 0; } int solve_parentmax(int x){ if(x == 0) return x; if(is_parent_max(x) == 0) return x; while(is_parent_parent_max(x)) x = hld.parent(x); if(x != 0) x = hld.parent(x); return x; } /* int solve_parentmax(int x){ if(x == 0) return x; if(is_parent_max(x) == 0) return x; auto path = hld.path(0,x); while(!path.empty()){ auto p = path.back(); path.pop_back(); int l = isparentparentmax_rq.min_left(p.second, all_is_good_query::check); l = min(max(l, p.first + 2), p.second); if(p.first + 2 < l){ return hld.invidxs()[l-2]; } while(l != p.first){ l--; int pathp = hld.invidxs()[l]; if(is_parent_parent_max(pathp)) continue; return hld.parent(hld.invidxs()[l]); } } return 0; } */ int solve_maxchild(int x){ auto path = hld.path(0,x); while(!path.empty()){ auto p = path.back(); path.pop_back(); int l = ismaxchild_rq.min_left(p.second, all_is_good_query::check); if(p.first + 1 < l){ return hld.invidxs()[l-1]; } int pathp = hld.invidxs()[p.first]; if(!ismaxchild[pathp]) return pathp; } return 0; } int solve_maxchild2(int c){ while(ismaxchild[c]) c = hld.parent(c); return c; } vector<int> dp; void set_A(int p, int a){ int heavy_child = hld.heavy_path_child(p); int parent = hld.parent(p); int heavy_child2 = -1; if(heavy_child != -1) heavy_child2 = hld.heavy_path_child(heavy_child); if(parent != -1){ children[parent].erase(make_pair(A[p], p)); } A[p] = a; if(parent != -1){ children[parent].insert(make_pair(A[p], p)); ismaxchild[maxchild[parent]] = 0; ismaxchild_rq.set(hld.idxs()[maxchild[parent]], 0); maxchild[parent] = children[parent].begin() -> second; ismaxchild[maxchild[parent]] = 1; ismaxchild_rq.set(hld.idxs()[maxchild[parent]], 1); //int updv = ruq::query(hld.idxs()[maxchild[parent]]); int updv = dp[maxchild[parent]]; int updr = solve_maxchild(parent); int c = parent; while(c != updr){ dp[c] = updv; c = hld.parent(c); } dp[c] = updv; } if(heavy_child2 != -1) isparentparentmax_rq.set(hld.idxs()[heavy_child2], is_parent_parent_max(heavy_child2)); isparentparentmax_rq.set(hld.idxs()[p], is_parent_parent_max(p)); } int query(int u, int v){ int au = A[u]; int av = A[v]; set_A(u, av); set_A(v, au); int g = solve_parentmax(u); if(u != g){ if(children[g].size() <= 1) return g; else if(hld.lca(u, maxchild[g]) == maxchild[g]){ auto i = children[g].begin(); i++; g = i -> second; } } // g = ruq::query(hld.idxs()[g]); g = dp[g]; return g; } int main(void){ cin >> N; A.resize(N); rep(i,N) A[i] = i; E.resize(N); rep(i,N-1){ int u,v; cin >> u >> v; u--; v--; E[u].push_back(v); E[v].push_back(u); } hld = heavy_light_decomposition(E); E.clear(); E.resize(N); children.resize(N); for(int i=1; i<N; i++){ E[hld.parent(i)].push_back(i); children[hld.parent(i)].insert(make_pair(A[i],i)); } maxchild.assign(N,-1); rep(i,N) if(!children[i].empty()) maxchild[i] = children[i].begin() -> second; ismaxchild.assign(N,0); for(int i=1; i<N; i++) ismaxchild[i] = (maxchild[hld.parent(i)] == i) ? 1 : 0; isparentparentmax_rq = all_is_good_query::rq(N); rep(i,N) isparentparentmax_rq.set(hld.idxs()[i], is_parent_parent_max(i)); ismaxchild_rq = all_is_good_query::rq(N); rep(i,N) ismaxchild_rq.set(hld.idxs()[i], ismaxchild[i]); int prevans = 0; int Q; cin >> Q; ruq::init(); { //vector<int> dp(N); dp.resize(N); rep(i,N) dp[i] = i; for(int i=N-1; i>=0; i--){ int p = hld.invidxs()[i]; if(children[p].empty()) continue; dp[p] = dp[maxchild[p]]; } rep(p,N) ruq::rq[hld.idxs()[p]] = dp[p]; } rep(queryid, Q){ int u,v; cin >> u >> v; u = (u+N-1+prevans) % N + 1; v = (v+N-1+prevans) % N + 1; u--; v--; int ans = query(u,v) + 1; cout << ans << "\n"; prevans = ans; } return 0; } struct ios_do_not_sync{ ios_do_not_sync(){ ios::sync_with_stdio(false); cin.tie(nullptr); } } ios_do_not_sync_instance;