結果

問題 No.1873 Bracket Swapping
ユーザー ytqm3
提出日時 2021-12-16 21:42:32
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 266 ms / 2,000 ms
コード長 3,897 bytes
コンパイル時間 2,772 ms
コンパイル使用メモリ 214,388 KB
最終ジャッジ日時 2025-01-26 23:48:07
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 27
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
typedef uint64_t u64;
typedef int64_t i64;
using namespace std;
template<u64 mod> struct modint{
u64 val;
modint(i64 val_=0):val((val_%i64(mod)+i64(mod))%i64(mod)){}
modint operator-(){
return (val==0)?0:mod-val;
}
modint operator+(modint rhs){
return modint(*this)+=rhs;
}
modint operator-(modint rhs){
return modint(*this)-=rhs;
}
modint operator*(modint rhs){
return modint(*this)*=rhs;
}
modint operator/(modint rhs){
return modint(*this)/=rhs;
}
modint operator^(i64 rhs){
return modint(*this)^=rhs;
}
modint &operator+=(modint rhs){
val+=rhs.val,val-=((val>=mod)?mod:0);
return (*this);
}
modint &operator-=(modint rhs){
val+=((val<rhs.val)?mod:0),val-=rhs.val;
return (*this);
}
modint &operator*=(modint rhs){
val=val*rhs.val%mod;
return (*this);
}
modint &operator/=(modint rhs){
return (*this)*=rhs^(mod-2);
}
modint &operator^=(i64 rhs){
modint res=1,now=(*this);
while(rhs){
res*=((rhs&1)?now:1),now*=now,rhs>>=1;
}
return (*this)=res;
}
bool operator==(modint rhs){
return val==rhs.val;
}
bool operator!=(modint rhs){
return val!=rhs.val;
}
friend std::ostream &operator<<(std::ostream& os,modint x){
return os<<(x.val);
}
friend std::istream &operator>>(std::istream& is,modint& x){
u64 t;
is>>t,x=t;
return is;
}
};
template<typename T> struct matrix{
vector<vector<T>> val;
int height,width;
matrix(int H,int W,T init=0):val(H,vector<T> (W,init)),height(H),width(W){}
vector<T> &operator[](int i){
return val[i];
}
matrix operator+(matrix rhs){
return matrix(*this)+=rhs;
}
matrix operator*(matrix rhs){
return matrix(*this)*=rhs;
}
matrix operator+=(matrix rhs){
for(int i=0;i<rhs.height;++i){
for(int j=0;j<rhs.width;++j){
(*this)[i][j]+=rhs[i][j];
}
}
return (*this);
}
matrix operator*=(matrix rhs){
matrix<T> res(height,rhs.width,0);
for(int i=0;i<this->height;++i){
for(int j=0;j<rhs.width;++j){
for(int k=0;k<this->width;++k){
res[i][j]+=(*this)[i][k]*rhs[k][j];
}
}
}
return (*this)=res;
}
matrix identity(int n){
matrix res(n,n);
for(int i=0;i<n;++i){
res[i][i]=1;
}
return res;
}
matrix pow(i64 k){
int n=(*this).height;
matrix res=identity(n),now=(*this);
while(k>0){
if(k%2==1){
res*=now;
}
now*=now;
k/=2;
}
return (*this)=res;
}
};
template<typename T> struct comb{
vector<T> dat,idat;
comb(int mx=3000000):dat(mx+1,1),idat(mx+1,1){
for(int i=1;i<=mx;++i){
dat[i]=dat[i-1]*i;
}
idat[mx]/=dat[mx];
for(int i=mx;i>0;--i){
idat[i-1]=idat[i]*i;
}
}
T operator()(int n,int k){
if(n<0||k<0||n<k){
return 0;
}
return dat[n]*idat[k]*idat[n-k];
}
};
int main(){
constexpr u64 mod=998244353;
typedef modint<mod> mint;
string S;
int K;
cin>>S>>K;
int N=S.size()/2;
vector<vector<vector<mint>>> dp(2*N+1,vector<vector<mint>> (2*N+5,vector<mint> (2*N+5)));
dp[0][0][0]=1;
for(int i=0;i<2*N;++i){
for(int j=0;j<=2*N;++j){
for(int k=0;k<=2*N;++k){
if(S[i]=='('){
dp[i+1][j+1][k]+=dp[i][j][k];
if(0<j){
dp[i+1][j-1][k+1]+=dp[i][j][k];
}
}
else{
dp[i+1][j+1][k+1]+=dp[i][j][k];
if(0<j){
dp[i+1][j-1][k]+=dp[i][j][k];
}
}
}
}
}
matrix<mint> A(N+1,N+1),B(N+1,1);
B[0][0]=1;
for(int i=0;i<=N;++i){
A[i][i]=N*(2*N-1)-i*i-(N-i)*(N-i);
if(0<i){
A[i-1][i]=i*i;
}
if(i<N){
A[i+1][i]=(N-i)*(N-i);
}
}
B=A.pow(K)*B;
mint ans=0;
comb<mint> C;
for(int i=0;i<=N;++i){
ans+=dp[2*N][0][2*i]*B[i][0]/(C(N,i)^2);
}
cout<<ans<<endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0