結果

問題 No.1788 Same Set
ユーザー 👑 emthrmemthrm
提出日時 2021-12-17 01:22:48
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
RE  
実行時間 -
コード長 11,377 bytes
コンパイル時間 2,540 ms
コンパイル使用メモリ 221,100 KB
実行使用メモリ 55,044 KB
最終ジャッジ日時 2023-10-12 01:39:35
合計ジャッジ時間 34,894 ms
ジャッジサーバーID
(参考情報)
judge12 / judge14
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
4,352 KB
testcase_01 AC 1 ms
4,348 KB
testcase_02 AC 1 ms
4,348 KB
testcase_03 RE -
testcase_04 RE -
testcase_05 AC 2 ms
4,348 KB
testcase_06 WA -
testcase_07 RE -
testcase_08 RE -
testcase_09 AC 2 ms
4,356 KB
testcase_10 AC 2 ms
4,352 KB
testcase_11 AC 78 ms
13,064 KB
testcase_12 RE -
testcase_13 RE -
testcase_14 WA -
testcase_15 WA -
testcase_16 RE -
testcase_17 WA -
testcase_18 RE -
testcase_19 AC 1,211 ms
55,044 KB
testcase_20 AC 148 ms
13,276 KB
testcase_21 RE -
testcase_22 RE -
testcase_23 RE -
testcase_24 RE -
testcase_25 RE -
testcase_26 RE -
testcase_27 AC 669 ms
24,840 KB
testcase_28 WA -
testcase_29 RE -
testcase_30 RE -
testcase_31 RE -
testcase_32 WA -
testcase_33 RE -
testcase_34 WA -
testcase_35 WA -
testcase_36 RE -
testcase_37 RE -
testcase_38 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 1000000007;
// constexpr int MOD = 998244353;
constexpr int DY[]{1, 0, -1, 0}, DX[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}, DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
  IOSetup() {
    std::cin.tie(nullptr);
    std::ios_base::sync_with_stdio(false);
    std::cout << fixed << setprecision(20);
  }
} iosetup;

template <typename T>
struct LazySegmentTree {
  using Monoid = typename T::Monoid;
  using OperatorMonoid = typename T::OperatorMonoid;

  LazySegmentTree(int n) : LazySegmentTree(std::vector<Monoid>(n, T::m_id())) {}

  LazySegmentTree(const std::vector<Monoid> &a) : n(a.size()) {
    while ((1 << height) < n) ++height;
    p2 = 1 << height;
    lazy.assign(p2, T::o_id());
    dat.assign(p2 << 1, T::m_id());
    for (int i = 0; i < n; ++i) dat[i + p2] = a[i];
    for (int i = p2 - 1; i > 0; --i) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]);
  }

  void set(int idx, const Monoid val) {
    idx += p2;
    for (int i = height; i > 0; --i) propagate(idx >> i);
    dat[idx] = val;
    for (int i = 1; i <= height; ++i) {
      int current_idx = idx >> i;
      dat[current_idx] = T::m_merge(dat[current_idx << 1], dat[(current_idx << 1) + 1]);
    }
  }

  void apply(int idx, const OperatorMonoid val) {
    idx += p2;
    for (int i = height; i > 0; --i) propagate(idx >> i);
    dat[idx] = T::apply(dat[idx], val);
    for (int i = 1; i <= height; ++i) {
      int current_idx = idx >> i;
      dat[current_idx] = T::m_merge(dat[current_idx << 1], dat[(current_idx << 1) + 1]);
    }
  }

  void apply(int left, int right, const OperatorMonoid val) {
    if (right <= left) return;
    left += p2;
    right += p2;
    int left_ctz = __builtin_ctz(left);
    for (int i = height; i > left_ctz; --i) propagate(left >> i);
    int right_ctz = __builtin_ctz(right);
    for (int i = height; i > right_ctz; --i) propagate(right >> i);
    for (int l = left, r = right; l < r; l >>= 1, r >>= 1) {
      if (l & 1) sub_apply(l++, val);
      if (r & 1) sub_apply(--r, val);
    }
    for (int i = left >> (left_ctz + 1); i > 0; i >>= 1) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]);
    for (int i = right >> (right_ctz + 1); i > 0; i >>= 1) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]);
  }

  Monoid get(int left, int right) {
    if (right <= left) return T::m_id();
    left += p2;
    right += p2;
    int left_ctz = __builtin_ctz(left);
    for (int i = height; i > left_ctz; --i) propagate(left >> i);
    int right_ctz = __builtin_ctz(right);
    for (int i = height; i > right_ctz; --i) propagate(right >> i);
    Monoid l_res = T::m_id(), r_res = T::m_id();
    for (; left < right; left >>= 1, right >>= 1) {
      if (left & 1) l_res = T::m_merge(l_res, dat[left++]);
      if (right & 1) r_res = T::m_merge(dat[--right], r_res);
    }
    return T::m_merge(l_res, r_res);
  }

  Monoid operator[](const int idx) {
    int node = idx + p2;
    for (int i = height; i > 0; --i) propagate(node >> i);
    return dat[node];
  }

  template <typename G>
  int find_right(int left, G g) {
    if (left >= n) return n;
    left += p2;
    for (int i = height; i > 0; --i) propagate(left >> i);
    Monoid val = T::m_id();
    do {
      while (!(left & 1)) left >>= 1;
      Monoid nx = T::m_merge(val, dat[left]);
      if (!g(nx)) {
        while (left < p2) {
          propagate(left);
          left <<= 1;
          nx = T::m_merge(val, dat[left]);
          if (g(nx)) {
            val = nx;
            ++left;
          }
        }
        return left - p2;
      }
      val = nx;
      ++left;
    } while (__builtin_popcount(left) > 1);
    return n;
  }

  template <typename G>
  int find_left(int right, G g) {
    if (right <= 0) return -1;
    right += p2;
    for (int i = height; i > 0; --i) propagate((right - 1) >> i);
    Monoid val = T::m_id();
    do {
      --right;
      while (right > 1 && (right & 1)) right >>= 1;
      Monoid nx = T::m_merge(dat[right], val);
      if (!g(nx)) {
        while (right < p2) {
          propagate(right);
          right = (right << 1) + 1;
          nx = T::m_merge(dat[right], val);
          if (g(nx)) {
            val = nx;
            --right;
          }
        }
        return right - p2;
      }
      val = nx;
    } while (__builtin_popcount(right) > 1);
    return -1;
  }

private:
  int n, p2, height = 0;
  std::vector<Monoid> dat;
  std::vector<OperatorMonoid> lazy;

  void sub_apply(int idx, const OperatorMonoid &val) {
    dat[idx] = T::apply(dat[idx], val);
    if (idx < p2) lazy[idx] = T::o_merge(lazy[idx], val);
  }

  void propagate(int idx) {
    // assert(1 <= idx && idx < p2);
    sub_apply(idx << 1, lazy[idx]);
    sub_apply((idx << 1) + 1, lazy[idx]);
    lazy[idx] = T::o_id();
  }
};

namespace monoid {
template <typename T>
struct RangeMinimumAndUpdateQuery {
  using Monoid = T;
  using OperatorMonoid = T;
  static constexpr Monoid m_id() { return std::numeric_limits<Monoid>::max(); }
  static constexpr OperatorMonoid o_id() { return std::numeric_limits<OperatorMonoid>::max(); }
  static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::min(a, b); }
  static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return b == o_id() ? a : b; }
  static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return b == o_id()? a : b; }
};

template <typename T>
struct RangeMaximumAndUpdateQuery {
  using Monoid = T;
  using OperatorMonoid = T;
  static constexpr Monoid m_id() { return std::numeric_limits<Monoid>::lowest(); }
  static constexpr OperatorMonoid o_id() { return std::numeric_limits<OperatorMonoid>::lowest(); }
  static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::max(a, b); }
  static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return b == o_id() ? a : b; }
  static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return b == o_id()? a : b; }
};

template <typename T, T Inf>
struct RangeMinimumAndAddQuery {
  using Monoid = T;
  using OperatorMonoid = T;
  static constexpr Monoid m_id() { return Inf; }
  static constexpr OperatorMonoid o_id() { return 0; }
  static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::min(a, b); }
  static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return a + b; }
  static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return a + b; }
};

template <typename T, T Inf>
struct RangeMaximumAndAddQuery {
  using Monoid = T;
  using OperatorMonoid = T;
  static constexpr Monoid m_id() { return -Inf; }
  static constexpr OperatorMonoid o_id() { return 0; }
  static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::max(a, b); }
  static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return a + b; }
  static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return a + b; }
};

template <typename T>
struct RangeSumAndUpdateQuery {
  using Monoid = struct {
    T sum;
    int len;
  };
  using OperatorMonoid = T;
  static std::vector<Monoid> init(int n) { return std::vector<Monoid>(n, Monoid{0, 1}); }
  static constexpr Monoid m_id() { return {0, 0}; }
  static constexpr OperatorMonoid o_id() { return std::numeric_limits<OperatorMonoid>::max(); }
  static Monoid m_merge(const Monoid &a, const Monoid &b) { return Monoid{a.sum + b.sum, a.len + b.len}; }
  static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return b == o_id() ? a : b; }
  static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return Monoid{b == o_id() ? a.sum : b * a.len, a.len}; }
};

template <typename T>
struct RangeSumAndAddQuery {
  using Monoid = struct {
    T sum;
    int len;
  };
  using OperatorMonoid = T;
  static std::vector<Monoid> init(int n) { return std::vector<Monoid>(n, Monoid{0, 1}); }
  static constexpr Monoid m_id() { return {0, 0}; }
  static constexpr OperatorMonoid o_id() { return 0; }
  static Monoid m_merge(const Monoid &a, const Monoid &b) { return Monoid{a.sum + b.sum, a.len + b.len}; }
  static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return a + b; }
  static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return Monoid{a.sum + b * a.len, a.len}; }
};
}  // monoid

int main() {
  struct S {
    using Monoid = pair<int, int>;
    using OperatorMonoid = int;
    static constexpr Monoid m_id() { return {INF, 0}; }
    static constexpr OperatorMonoid o_id() { return 0; }
    static Monoid m_merge(const Monoid& a, const Monoid& b) {
      if (a.first < b.first) {
        return a;
      } else if (a.first > b.first) {
        return b;
      } else {
        return {a.first, a.second + b.second};
      }
    }
    static OperatorMonoid o_merge(const OperatorMonoid& a, const OperatorMonoid& b) { return a + b; }
    static Monoid apply(Monoid a, const OperatorMonoid& b) {
      a.first += b;
      return a;
    }
  };

  int n; cin >> n;
  vector<int> a(n), b(n);
  REP(i, n) cin >> a[i];
  REP(i, n) cin >> b[i];
  map<int, vector<int>> pos_a, pos_b;
  for (int i = n - 1; i >= 0; --i) {
    pos_a[a[i]].emplace_back(i);
    pos_b[b[i]].emplace_back(i);
  }
  LazySegmentTree<S> seg(vector(n, S::Monoid{0, 1}));
  for (const auto [v, poss] : pos_a) {
    int l = poss.back(), r = (pos_b.count(v) ? pos_b[v].back() : n);
    if (l > r) swap(l, r);
    seg.apply(l, r, 1);
  }
  for (const auto [v, poss] : pos_b) {
    if (!pos_a.count(v)) seg.apply(poss.back(), n, 1);
  }
  ll ans = 0;
  REP(i, n) {
    // REP(i, n) cerr << '{' << seg[i].first << ',' << seg[i].second << '}' << " \n"[i + 1 == n];
    const auto [mn, cnt] = seg.get(i, n);
    if (mn == 0) ans += cnt;
    if (a[i] != b[i]) {
      pos_a[a[i]].pop_back();
      if (pos_a[a[i]].empty()) pos_a.erase(a[i]);
      if (pos_b.count(a[i])) {
        int l = pos_b[a[i]].back();
        seg.apply(i, l, -1);
        int r = (pos_a.count(a[i]) ? pos_a[a[i]].back() : n);
        if (l > r) swap(l, r);
        seg.apply(l, r, 1);
      } else {
        seg.apply(i, n, -1);
      }
      pos_b[b[i]].pop_back();
      if (pos_b[b[i]].empty()) pos_b.erase(b[i]);
      if (pos_a.count(b[i])) {
        int l = pos_a[b[i]].back();
        seg.apply(i, l, -1);
        int r = (pos_b.count(b[i]) ? pos_b[b[i]].back() : n);
        if (l > r) swap(l, r);
        seg.apply(l, r, 1);
      } else {
        seg.apply(i, n, -1);
      }
    } else {
      pos_a[a[i]].pop_back();
      if (pos_a[a[i]].empty()) pos_a.erase(a[i]);
      pos_b[b[i]].pop_back();
      if (pos_b[b[i]].empty()) pos_b.erase(b[i]);
      if (pos_a.count(a[i]) || pos_b.count(b[i])) {
        int l = pos_a[a[i]].back(), r = pos_b[b[i]].back();
        if (l > r) swap(l, r);
        seg.apply(l, r, 1);
      }
    }
  }
  cout << ans << '\n';
  return 0;
}
0