結果
問題 | No.1897 Sum of 2nd Max |
ユーザー |
|
提出日時 | 2021-12-18 13:37:18 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 17 ms / 2,000 ms |
コード長 | 1,189 bytes |
コンパイル時間 | 1,891 ms |
コンパイル使用メモリ | 197,684 KB |
最終ジャッジ日時 | 2025-01-27 03:16:13 |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 30 |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:17:29: warning: format ‘%lld’ expects argument of type ‘long long int*’, but argument 2 has type ‘i64*’ {aka ‘long int*’} [-Wformat=] 17 | i64 n, k; scanf("%lld%lld", &n, &k); | ~~~^ ~~ | | | | | i64* {aka long int*} | long long int* | %ld main.cpp:17:33: warning: format ‘%lld’ expects argument of type ‘long long int*’, but argument 3 has type ‘i64*’ {aka ‘long int*’} [-Wformat=] 17 | i64 n, k; scanf("%lld%lld", &n, &k); | ~~~^ ~~ | | | | | i64* {aka long int*} | long long int* | %ld main.cpp:55:20: warning: format ‘%lld’ expects argument of type ‘long long int’, but argument 2 has type ‘i64’ {aka ‘long int’} [-Wformat=] 55 | printf("%lld\n", ans); | ~~~^ ~~~ | | | | | i64 {aka long int} | long long int | %ld main.cpp:17:24: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 17 | i64 n, k; scanf("%lld%lld", &n, &k); | ~~~~~^~~~~~~~~~~~~~~~~~~~
ソースコード
#include <bits/stdc++.h> using i64 = std::int_fast64_t; constexpr int MOD = 998244353; i64 powmod(i64 x, i64 n) { i64 ret = 1; while(n) { if(n & 1) (ret *= x) %= MOD; (x *= x) %= MOD; n >>= 1; } return ret; } int main() { i64 n, k; scanf("%lld%lld", &n, &k); // 線形篩 std::vector<int> primes, minp(k + 1, -1); for(int i = 2; i < minp.size(); i++) { if(minp[i] == -1) { minp[i] = i; primes.push_back(i); } for(int p: primes) { if(p * i >= minp.size() or p > minp[i]) break; minp[p * i] = p; } } // べき乗列挙 std::vector<i64> powers(k + 1); powers[1] = 1; for(int p: primes) powers[p] = powmod(p, n - 1); for(int i = 4; i < powers.size(); i++) { if(minp[i] == i) continue; powers[i] = powers[i / minp[i]] * powers[minp[i]] % MOD; } auto f = [&](i64 x) -> i64 { const i64 A = powers[k] * k % MOD; const i64 B = n * x % MOD * powers[k - x] % MOD; const i64 C = powers[k - x] * (k - x) % MOD; return ((A - B - C) % MOD + MOD) % MOD; }; i64 ans = 0; for(int i = 1; i <= k; i++) { i64 count = f(i) - f(i - 1); count = (count % MOD + MOD) % MOD; ans = (ans + count * (k - i + 1)) % MOD; } printf("%lld\n", ans); }