結果
| 問題 |
No.1897 Sum of 2nd Max
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-12-18 13:37:18 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 17 ms / 2,000 ms |
| コード長 | 1,189 bytes |
| コンパイル時間 | 1,891 ms |
| コンパイル使用メモリ | 197,684 KB |
| 最終ジャッジ日時 | 2025-01-27 03:16:13 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 30 |
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:17:29: warning: format ‘%lld’ expects argument of type ‘long long int*’, but argument 2 has type ‘i64*’ {aka ‘long int*’} [-Wformat=]
17 | i64 n, k; scanf("%lld%lld", &n, &k);
| ~~~^ ~~
| | |
| | i64* {aka long int*}
| long long int*
| %ld
main.cpp:17:33: warning: format ‘%lld’ expects argument of type ‘long long int*’, but argument 3 has type ‘i64*’ {aka ‘long int*’} [-Wformat=]
17 | i64 n, k; scanf("%lld%lld", &n, &k);
| ~~~^ ~~
| | |
| | i64* {aka long int*}
| long long int*
| %ld
main.cpp:55:20: warning: format ‘%lld’ expects argument of type ‘long long int’, but argument 2 has type ‘i64’ {aka ‘long int’} [-Wformat=]
55 | printf("%lld\n", ans);
| ~~~^ ~~~
| | |
| | i64 {aka long int}
| long long int
| %ld
main.cpp:17:24: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
17 | i64 n, k; scanf("%lld%lld", &n, &k);
| ~~~~~^~~~~~~~~~~~~~~~~~~~
ソースコード
#include <bits/stdc++.h>
using i64 = std::int_fast64_t;
constexpr int MOD = 998244353;
i64 powmod(i64 x, i64 n) {
i64 ret = 1;
while(n) {
if(n & 1) (ret *= x) %= MOD;
(x *= x) %= MOD;
n >>= 1;
}
return ret;
}
int main() {
i64 n, k; scanf("%lld%lld", &n, &k);
// 線形篩
std::vector<int> primes, minp(k + 1, -1);
for(int i = 2; i < minp.size(); i++) {
if(minp[i] == -1) {
minp[i] = i;
primes.push_back(i);
}
for(int p: primes) {
if(p * i >= minp.size() or p > minp[i]) break;
minp[p * i] = p;
}
}
// べき乗列挙
std::vector<i64> powers(k + 1); powers[1] = 1;
for(int p: primes) powers[p] = powmod(p, n - 1);
for(int i = 4; i < powers.size(); i++) {
if(minp[i] == i) continue;
powers[i] = powers[i / minp[i]] * powers[minp[i]] % MOD;
}
auto f = [&](i64 x) -> i64 {
const i64 A = powers[k] * k % MOD;
const i64 B = n * x % MOD * powers[k - x] % MOD;
const i64 C = powers[k - x] * (k - x) % MOD;
return ((A - B - C) % MOD + MOD) % MOD;
};
i64 ans = 0;
for(int i = 1; i <= k; i++) {
i64 count = f(i) - f(i - 1);
count = (count % MOD + MOD) % MOD;
ans = (ans + count * (k - i + 1)) % MOD;
}
printf("%lld\n", ans);
}