結果
| 問題 | No.1897 Sum of 2nd Max |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-12-18 13:52:37 |
| 言語 | C++17 (gcc 15.2.0 + boost 1.89.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 3,960 bytes |
| 記録 | |
| コンパイル時間 | 1,974 ms |
| コンパイル使用メモリ | 196,388 KB |
| 最終ジャッジ日時 | 2025-01-27 03:17:23 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 TLE * 1 |
| other | AC * 11 TLE * 19 |
コンパイルメッセージ
C_Square.cpp: In function ‘int main()’:
C_Square.cpp:27:9: warning: format ‘%lld’ expects argument of type ‘long long int’, but argument 2 has type ‘cplib::modint<998244353>::u64’ {aka ‘long unsigned int’} [-Wformat=]
C_Square.cpp:7:17: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
ソースコード
#line 1 "C_Square.cpp"
#include <bits/stdc++.h>
#line 1 "/home/ecasdqina/cpcpp/libs/library_cpp/math/modint.hpp"
#line 5 "/home/ecasdqina/cpcpp/libs/library_cpp/math/modint.hpp"
namespace cplib {
template <std::uint_fast64_t Modulus>
class modint {
using u32 = std::uint_fast32_t;
using u64 = std::uint_fast64_t;
using i32 = std::int_fast32_t;
using i64 = std::int_fast64_t;
inline u64 apply(i64 x) { return (x < 0 ? x + Modulus : x); };
public:
u64 a;
static constexpr u64 mod = Modulus;
constexpr modint(const i64& x = 0) noexcept: a(apply(x % (i64)Modulus)) {}
constexpr modint operator+(const modint& rhs) const noexcept { return modint(*this) += rhs; }
constexpr modint operator-(const modint& rhs) const noexcept { return modint(*this) -= rhs; }
constexpr modint operator*(const modint& rhs) const noexcept { return modint(*this) *= rhs; }
constexpr modint operator/(const modint& rhs) const noexcept { return modint(*this) /= rhs; }
constexpr modint operator^(const u64& k) const noexcept { return modint(*this) ^= k; }
constexpr modint operator^(const modint& k) const noexcept { return modint(*this) ^= k.value(); }
constexpr modint operator-() const noexcept { return modint(Modulus - a); }
constexpr modint operator++() noexcept { return (*this) = modint(*this) + 1; }
constexpr modint operator--() noexcept { return (*this) = modint(*this) - 1; }
const bool operator==(const modint& rhs) const noexcept { return a == rhs.a; };
const bool operator!=(const modint& rhs) const noexcept { return a != rhs.a; };
const bool operator<=(const modint& rhs) const noexcept { return a <= rhs.a; };
const bool operator>=(const modint& rhs) const noexcept { return a >= rhs.a; };
const bool operator<(const modint& rhs) const noexcept { return a < rhs.a; };
const bool operator>(const modint& rhs) const noexcept { return a > rhs.a; };
constexpr modint& operator+=(const modint& rhs) noexcept {
a += rhs.a;
if (a >= Modulus) a -= Modulus;
return *this;
}
constexpr modint& operator-=(const modint& rhs) noexcept {
if (a < rhs.a) a += Modulus;
a -= rhs.a;
return *this;
}
constexpr modint& operator*=(const modint& rhs) noexcept {
a = a * rhs.a % Modulus;
return *this;
}
constexpr modint& operator/=(modint rhs) noexcept {
u64 exp = Modulus - 2;
while (exp) {
if (exp % 2) (*this) *= rhs;
rhs *= rhs;
exp /= 2;
}
return *this;
}
constexpr modint& operator^=(u64 k) noexcept {
auto b = modint(1);
while(k) {
if(k & 1) b = b * (*this);
(*this) *= (*this);
k >>= 1;
}
return (*this) = b;
}
constexpr modint& operator=(const modint& rhs) noexcept {
a = rhs.a;
return (*this);
}
const modint inverse() const {
return modint(1) / *this;
}
const modint power(i64 k) const {
if(k < 0) return modint(*this).inverse() ^ (-k);
return modint(*this) ^ k;
}
explicit operator bool() const { return a; }
explicit operator u64() const { return a; }
constexpr u64& value() noexcept { return a; }
constexpr const u64& value() const noexcept { return a; }
friend std::ostream& operator<<(std::ostream& os, const modint& p) {
return os << p.a;
}
friend std::istream& operator>>(std::istream& is, modint& p) {
u64 t;
is >> t;
p = modint(t);
return is;
}
};
}
#line 4 "C_Square.cpp"
using mint = cplib::modint<998244353>;
int main() {
int n, k; scanf("%d%d", &n, &k);
std::vector<mint> fact(n + 1, 1), ifact(n + 1);
for(int i = 1; i < fact.size(); i++) fact[i] = fact[i - 1] * i;
for(int i = 0; i < fact.size(); i++) ifact[i] = fact[i].inverse();
auto comb = [&](int n, int r) -> mint { return fact[n] * ifact[r] * ifact[n - r]; };
auto f = [&](mint x) -> mint {
mint ret = 0;
for(int i = 2; i <= n; i++) {
ret += comb(n, i) * x.power(i) * (-x + k).power(n - i);
}
return ret;
};
mint ans = 0;
for(int i = 1; i <= k; i++) {
mint count = f(i) - f(i - 1);
ans += count * mint(k - i + 1);
}
printf("%lld\n", ans.value());
}