結果

問題 No.1897 Sum of 2nd Max
ユーザー polylogKpolylogK
提出日時 2021-12-18 13:52:37
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 3,960 bytes
コンパイル時間 2,007 ms
コンパイル使用メモリ 204,992 KB
実行使用メモリ 20,168 KB
最終ジャッジ日時 2024-11-28 11:38:07
合計ジャッジ時間 63,443 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
13,640 KB
testcase_01 AC 1 ms
13,348 KB
testcase_02 AC 2 ms
13,632 KB
testcase_03 TLE -
testcase_04 TLE -
testcase_05 TLE -
testcase_06 TLE -
testcase_07 TLE -
testcase_08 TLE -
testcase_09 TLE -
testcase_10 TLE -
testcase_11 TLE -
testcase_12 TLE -
testcase_13 TLE -
testcase_14 AC 73 ms
13,632 KB
testcase_15 AC 122 ms
13,348 KB
testcase_16 AC 860 ms
13,632 KB
testcase_17 AC 253 ms
13,220 KB
testcase_18 AC 479 ms
13,636 KB
testcase_19 TLE -
testcase_20 TLE -
testcase_21 TLE -
testcase_22 AC 1,988 ms
13,764 KB
testcase_23 TLE -
testcase_24 AC 2 ms
6,816 KB
testcase_25 AC 2 ms
6,820 KB
testcase_26 AC 2 ms
6,820 KB
testcase_27 AC 2 ms
6,820 KB
testcase_28 AC 2 ms
6,820 KB
testcase_29 AC 2 ms
6,820 KB
testcase_30 TLE -
testcase_31 TLE -
testcase_32 TLE -
testcase_33 TLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "C_Square.cpp"
#include <bits/stdc++.h>

#line 1 "/home/ecasdqina/cpcpp/libs/library_cpp/math/modint.hpp"



#line 5 "/home/ecasdqina/cpcpp/libs/library_cpp/math/modint.hpp"

namespace cplib {
template <std::uint_fast64_t Modulus>
class modint {
	using u32 = std::uint_fast32_t;
	using u64 = std::uint_fast64_t;
	using i32 = std::int_fast32_t;
	using i64 = std::int_fast64_t;

	inline u64 apply(i64 x) { return (x < 0 ? x + Modulus : x); };

public:
	u64 a;
	static constexpr u64 mod = Modulus;

	constexpr modint(const i64& x = 0) noexcept: a(apply(x % (i64)Modulus)) {}

	constexpr modint operator+(const modint& rhs) const noexcept { return modint(*this) += rhs; }
	constexpr modint operator-(const modint& rhs) const noexcept { return modint(*this) -= rhs; }
	constexpr modint operator*(const modint& rhs) const noexcept { return modint(*this) *= rhs; }
	constexpr modint operator/(const modint& rhs) const noexcept { return modint(*this) /= rhs; }
	constexpr modint operator^(const u64& k) const noexcept { return modint(*this) ^= k; }
	constexpr modint operator^(const modint& k) const noexcept { return modint(*this) ^= k.value(); }
	constexpr modint operator-() const noexcept { return modint(Modulus - a); }
	constexpr modint operator++() noexcept { return (*this) = modint(*this) + 1; }
	constexpr modint operator--() noexcept { return (*this) = modint(*this) - 1; }
	const bool operator==(const modint& rhs) const noexcept { return a == rhs.a; };
	const bool operator!=(const modint& rhs) const noexcept { return a != rhs.a; };
	const bool operator<=(const modint& rhs) const noexcept { return a <= rhs.a; };
	const bool operator>=(const modint& rhs) const noexcept { return a >= rhs.a; };
	const bool operator<(const modint& rhs) const noexcept { return a < rhs.a; };
	const bool operator>(const modint& rhs) const noexcept { return a > rhs.a; };
	constexpr modint& operator+=(const modint& rhs) noexcept {
		a += rhs.a;
		if (a >= Modulus) a -= Modulus;
		return *this;
	}
	constexpr modint& operator-=(const modint& rhs) noexcept {
		if (a < rhs.a) a += Modulus;
		a -= rhs.a;
		return *this;
	}
	constexpr modint& operator*=(const modint& rhs) noexcept {
		a = a * rhs.a % Modulus;
		return *this;
	}
	constexpr modint& operator/=(modint rhs) noexcept {
		u64 exp = Modulus - 2;
		while (exp) {
			if (exp % 2) (*this) *= rhs;

			rhs *= rhs;
			exp /= 2;
		}
		return *this;
	}
	constexpr modint& operator^=(u64 k) noexcept {
		auto b = modint(1);
		while(k) {
			if(k & 1) b = b * (*this);
			(*this) *= (*this);
			k >>= 1;
		}
		return (*this) = b;
	}
	constexpr modint& operator=(const modint& rhs) noexcept {
		a = rhs.a;
		return (*this);
	}

	const modint inverse() const {
		return modint(1) / *this;
	}
	const modint power(i64 k) const {
		if(k < 0) return modint(*this).inverse() ^ (-k);
		return modint(*this) ^ k;
	}

	explicit operator bool() const { return a; }
	explicit operator u64() const { return a; }
	constexpr u64& value() noexcept { return a; }
	constexpr const u64& value() const noexcept { return a; }

	friend std::ostream& operator<<(std::ostream& os, const modint& p) {
		return os << p.a;
	}
	friend std::istream& operator>>(std::istream& is, modint& p) {
		u64 t;
		is >> t;
		p = modint(t);
		return is;
	}
};
}


#line 4 "C_Square.cpp"
using mint = cplib::modint<998244353>;

int main() {
	int n, k; scanf("%d%d", &n, &k);

	std::vector<mint> fact(n + 1, 1), ifact(n + 1);
	for(int i = 1; i < fact.size(); i++) fact[i] = fact[i - 1] * i;
	for(int i = 0; i < fact.size(); i++) ifact[i] = fact[i].inverse();
	auto comb = [&](int n, int r) -> mint { return fact[n] * ifact[r] * ifact[n - r]; };

	auto f = [&](mint x) -> mint {
		mint ret = 0;
		for(int i = 2; i <= n; i++) {
			ret += comb(n, i) * x.power(i) * (-x + k).power(n - i);
		}
		return ret;
	};

	mint ans = 0;
	for(int i = 1; i <= k; i++) {
		mint count = f(i) - f(i - 1);
		ans += count * mint(k - i + 1);
	}
	printf("%lld\n", ans.value());
}
0