結果
| 問題 | 
                            No.1897 Sum of 2nd Max
                             | 
                    
| コンテスト | |
| ユーザー | 
                             | 
                    
| 提出日時 | 2021-12-18 13:52:37 | 
| 言語 | C++17  (gcc 13.3.0 + boost 1.87.0)  | 
                    
| 結果 | 
                             
                                TLE
                                 
                             
                            
                         | 
                    
| 実行時間 | - | 
| コード長 | 3,960 bytes | 
| コンパイル時間 | 1,974 ms | 
| コンパイル使用メモリ | 196,388 KB | 
| 最終ジャッジ日時 | 2025-01-27 03:17:23 | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge5 / judge1 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 TLE * 1 | 
| other | AC * 11 TLE * 19 | 
コンパイルメッセージ
C_Square.cpp: In function ‘int main()’:
C_Square.cpp:27:9: warning: format ‘%lld’ expects argument of type ‘long long int’, but argument 2 has type ‘cplib::modint<998244353>::u64’ {aka ‘long unsigned int’} [-Wformat=]
C_Square.cpp:7:17: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
            
            ソースコード
#line 1 "C_Square.cpp"
#include <bits/stdc++.h>
#line 1 "/home/ecasdqina/cpcpp/libs/library_cpp/math/modint.hpp"
#line 5 "/home/ecasdqina/cpcpp/libs/library_cpp/math/modint.hpp"
namespace cplib {
template <std::uint_fast64_t Modulus>
class modint {
	using u32 = std::uint_fast32_t;
	using u64 = std::uint_fast64_t;
	using i32 = std::int_fast32_t;
	using i64 = std::int_fast64_t;
	inline u64 apply(i64 x) { return (x < 0 ? x + Modulus : x); };
public:
	u64 a;
	static constexpr u64 mod = Modulus;
	constexpr modint(const i64& x = 0) noexcept: a(apply(x % (i64)Modulus)) {}
	constexpr modint operator+(const modint& rhs) const noexcept { return modint(*this) += rhs; }
	constexpr modint operator-(const modint& rhs) const noexcept { return modint(*this) -= rhs; }
	constexpr modint operator*(const modint& rhs) const noexcept { return modint(*this) *= rhs; }
	constexpr modint operator/(const modint& rhs) const noexcept { return modint(*this) /= rhs; }
	constexpr modint operator^(const u64& k) const noexcept { return modint(*this) ^= k; }
	constexpr modint operator^(const modint& k) const noexcept { return modint(*this) ^= k.value(); }
	constexpr modint operator-() const noexcept { return modint(Modulus - a); }
	constexpr modint operator++() noexcept { return (*this) = modint(*this) + 1; }
	constexpr modint operator--() noexcept { return (*this) = modint(*this) - 1; }
	const bool operator==(const modint& rhs) const noexcept { return a == rhs.a; };
	const bool operator!=(const modint& rhs) const noexcept { return a != rhs.a; };
	const bool operator<=(const modint& rhs) const noexcept { return a <= rhs.a; };
	const bool operator>=(const modint& rhs) const noexcept { return a >= rhs.a; };
	const bool operator<(const modint& rhs) const noexcept { return a < rhs.a; };
	const bool operator>(const modint& rhs) const noexcept { return a > rhs.a; };
	constexpr modint& operator+=(const modint& rhs) noexcept {
		a += rhs.a;
		if (a >= Modulus) a -= Modulus;
		return *this;
	}
	constexpr modint& operator-=(const modint& rhs) noexcept {
		if (a < rhs.a) a += Modulus;
		a -= rhs.a;
		return *this;
	}
	constexpr modint& operator*=(const modint& rhs) noexcept {
		a = a * rhs.a % Modulus;
		return *this;
	}
	constexpr modint& operator/=(modint rhs) noexcept {
		u64 exp = Modulus - 2;
		while (exp) {
			if (exp % 2) (*this) *= rhs;
			rhs *= rhs;
			exp /= 2;
		}
		return *this;
	}
	constexpr modint& operator^=(u64 k) noexcept {
		auto b = modint(1);
		while(k) {
			if(k & 1) b = b * (*this);
			(*this) *= (*this);
			k >>= 1;
		}
		return (*this) = b;
	}
	constexpr modint& operator=(const modint& rhs) noexcept {
		a = rhs.a;
		return (*this);
	}
	const modint inverse() const {
		return modint(1) / *this;
	}
	const modint power(i64 k) const {
		if(k < 0) return modint(*this).inverse() ^ (-k);
		return modint(*this) ^ k;
	}
	explicit operator bool() const { return a; }
	explicit operator u64() const { return a; }
	constexpr u64& value() noexcept { return a; }
	constexpr const u64& value() const noexcept { return a; }
	friend std::ostream& operator<<(std::ostream& os, const modint& p) {
		return os << p.a;
	}
	friend std::istream& operator>>(std::istream& is, modint& p) {
		u64 t;
		is >> t;
		p = modint(t);
		return is;
	}
};
}
#line 4 "C_Square.cpp"
using mint = cplib::modint<998244353>;
int main() {
	int n, k; scanf("%d%d", &n, &k);
	std::vector<mint> fact(n + 1, 1), ifact(n + 1);
	for(int i = 1; i < fact.size(); i++) fact[i] = fact[i - 1] * i;
	for(int i = 0; i < fact.size(); i++) ifact[i] = fact[i].inverse();
	auto comb = [&](int n, int r) -> mint { return fact[n] * ifact[r] * ifact[n - r]; };
	auto f = [&](mint x) -> mint {
		mint ret = 0;
		for(int i = 2; i <= n; i++) {
			ret += comb(n, i) * x.power(i) * (-x + k).power(n - i);
		}
		return ret;
	};
	mint ans = 0;
	for(int i = 1; i <= k; i++) {
		mint count = f(i) - f(i - 1);
		ans += count * mint(k - i + 1);
	}
	printf("%lld\n", ans.value());
}