結果

問題 No.1790 Subtree Deletion
ユーザー akakimidoriakakimidori
提出日時 2021-12-19 00:07:56
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 92 ms / 3,000 ms
コード長 10,579 bytes
コンパイル時間 15,203 ms
コンパイル使用メモリ 377,360 KB
実行使用メモリ 24,192 KB
最終ジャッジ日時 2024-09-15 14:19:01
合計ジャッジ時間 18,059 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 1 ms
5,376 KB
testcase_03 AC 92 ms
24,064 KB
testcase_04 AC 91 ms
24,064 KB
testcase_05 AC 84 ms
24,120 KB
testcase_06 AC 83 ms
24,192 KB
testcase_07 AC 85 ms
24,084 KB
testcase_08 AC 8 ms
5,376 KB
testcase_09 AC 75 ms
23,680 KB
testcase_10 AC 85 ms
23,872 KB
testcase_11 AC 88 ms
23,872 KB
testcase_12 AC 74 ms
20,840 KB
testcase_13 AC 62 ms
19,004 KB
testcase_14 AC 19 ms
7,168 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: type alias `Map` is never used
   --> src/main.rs:320:6
    |
320 | type Map<K, V> = BTreeMap<K, V>;
    |      ^^^
    |
    = note: `#[warn(dead_code)]` on by default

warning: type alias `Deque` is never used
   --> src/main.rs:322:6
    |
322 | type Deque<T> = VecDeque<T>;
    |      ^^^^^

ソースコード

diff #

// ---------- begin SegmentTree Point update Range query ----------
mod segment_tree {
    pub struct PURQ<T, F> {
        size: usize,
        data: Vec<T>,
        e: T,
        op: F,
    }
    #[allow(dead_code)]
    impl<T, F> PURQ<T, F>
    where
        T: Clone,
        F: Fn(&T, &T) -> T,
    {
        pub fn new(size: usize, e: T, op: F) -> PURQ<T, F> {
            let size = size.next_power_of_two();
            PURQ {
                size,
                data: vec![e.clone(); 2 * size],
                e: e,
                op: op,
            }
        }
        pub fn update(&mut self, x: usize, v: T) {
            assert!(x < self.size);
            let mut x = x + self.size;
            let data = &mut self.data;
            data[x] = v;
            x >>= 1;
            while x > 0 {
                data[x] = (self.op)(&data[2 * x], &data[2 * x + 1]);
                x >>= 1;
            }
        }
        pub fn update_tmp(&mut self, x: usize, v: T) {
            assert!(x < self.size);
            self.data[x + self.size] = v;
        }
        pub fn update_all(&mut self) {
            let data = &mut self.data;
            for k in (1..self.size).rev() {
                data[k] = (self.op)(&data[2 * k], &data[2 * k + 1]);
            }
        }
        pub fn find(&self, l: usize, r: usize) -> T {
            assert!(l <= r && r <= self.size);
            if l == r {
                return self.e.clone();
            }
            let mut p = self.e.clone();
            let mut q = self.e.clone();
            let mut l = l + self.size;
            let mut r = r + self.size;
            let data = &self.data;
            while l < r {
                if l & 1 == 1 {
                    p = (self.op)(&p, &data[l]);
                    l += 1;
                }
                if r & 1 == 1 {
                    r -= 1;
                    q = (self.op)(&data[r], &q);
                }
                l >>= 1;
                r >>= 1;
            }
            (self.op)(&p, &q)
        }
    }
}
// ---------- end SegmentTree Point update Range query ----------
// ---------- begin Heavy-Light decomposition ----------
pub struct HLD {
    size: usize,
    edge: Vec<(usize, usize)>,
    child: Vec<Vec<usize>>,
    path_root: Vec<usize>,
    parent: Vec<usize>,
    left: Vec<usize>,
    right: Vec<usize>,
    inverse: Vec<usize>,
}

impl HLD {
    pub fn new(size: usize) -> Self {
        assert!(size <= 10usize.pow(8));
        HLD {
            size: size,
            edge: Vec::with_capacity(size - 1),
            child: Vec::new(),
            path_root: Vec::new(),
            parent: Vec::new(),
            left: Vec::new(),
            right: Vec::new(),
            inverse: Vec::new(),
        }
    }
    pub fn add_edge(&mut self, a: usize, b: usize) {
        assert!(a != b && a < self.size && b < self.size);
        self.edge.push((a, b));
    }
    pub fn build(&mut self, root: usize) {
        assert!(self.edge.len() + 1 == self.size);
        let size = self.size;
        let mut cnt = vec![0; size];
        for &(a, b) in self.edge.iter() {
            cnt[a] += 1;
            cnt[b] += 1;
        }
        let mut child = cnt
            .into_iter()
            .map(|c| Vec::with_capacity(c))
            .collect::<Vec<_>>();
        for &(a, b) in self.edge.iter() {
            child[a].push(b);
            child[b].push(a);
        }
        let mut parent = vec![size; size];
        let mut q = Vec::with_capacity(size);
        q.push(root);
        parent[root] = root;
        for i in 0..size {
            let v = q[i];
            for u in child[v].clone() {
                assert!(parent[u] == size);
                parent[u] = v;
                let k = child[u].iter().position(|e| *e == v).unwrap();
                child[u].remove(k);
                q.push(u);
            }
        }
        let mut sum = vec![1; size];
        for &v in q.iter().rev() {
            let child = &mut child[v];
            if !child.is_empty() {
                let mut max = (0, 0);
                for (i, &u) in child.iter().enumerate() {
                    sum[v] += sum[u];
                    max = std::cmp::max(max, (sum[u], i));
                }
                child.swap(0, max.1);
            }
        }
        let mut path_root = (0..size).collect::<Vec<_>>();
        let mut left = vec![0; size];
        let mut right = vec![0; size];
        let mut dfs = vec![(root, false)];
        let mut id = 0;
        while let Some((v, end)) = dfs.pop() {
            if end {
                right[v] = id;
                continue;
            }
            left[v] = id;
            id += 1;
            dfs.push((v, true));
            let child = &child[v];
            if !child.is_empty() {
                for &u in child.iter().skip(1) {
                    path_root[u] = u;
                    dfs.push((u, false));
                }
                let u = child[0];
                path_root[u] = path_root[v];
                dfs.push((u, false));
            }
        }
        let mut inverse = vec![size; size];
        for (i, l) in left.iter().enumerate() {
            inverse[*l] = i;
        }
        self.child = child;
        self.parent = parent;
        self.left = left;
        self.right = right;
        self.path_root = path_root;
        self.inverse = inverse;
    }
    pub fn lca(&self, mut a: usize, mut b: usize) -> usize {
        assert!(a < self.size && b < self.size);
        let path = &self.path_root;
        let parent = &self.parent;
        let index = &self.left;
        while path[a] != path[b] {
            if index[a] > index[b] {
                a = parent[path[a]];
            } else {
                b = parent[path[b]];
            }
        }
        (index[a], a).min((index[b], b)).1
    }
    pub fn path(
        &self,
        src: usize,
        dst: usize,
        up: &mut Vec<(usize, usize)>,
        down: &mut Vec<(usize, usize)>,
    ) {
        assert!(src < self.size && dst < self.size);
        up.clear();
        down.clear();
        let path = &self.path_root;
        let parent = &self.parent;
        let index = &self.left;
        let mut x = src;
        let mut y = dst;
        while path[x] != path[y] {
            if index[x] > index[y] {
                let p = path[x];
                assert!(p == path[p]);
                up.push((index[p], index[x] + 1));
                x = parent[p];
            } else {
                let p = path[y];
                assert!(p == path[p]);
                down.push((index[p], index[y] + 1));
                y = parent[p];
            }
        }
        if index[x] <= index[y] {
            down.push((index[x], index[y] + 1));
        } else {
            up.push((index[y], index[x] + 1));
        }
        down.reverse();
    }
    pub fn sub_tree(&self, v: usize) -> (usize, usize) {
        assert!(v < self.size);
        (self.left[v], self.right[v])
    }
    pub fn parent(&self, v: usize) -> Option<usize> {
        assert!(v < self.size);
        let p = self.parent[v];
        if p == v {
            None
        } else {
            Some(p)
        }
    }
    // s -> t へのパスの2番目の頂点を返す
    pub fn next(&self, s: usize, t: usize) -> usize {
        assert!(s < self.size && t < self.size && s != t);
        let (a, b) = self.sub_tree(s);
        let (c, d) = self.sub_tree(t);
        if !(a <= c && d <= b) {
            return self.parent[s];
        }
        let mut pos = t;
        let mut pre = t;
        while self.path_root[s] != self.path_root[pos] {
            pre = self.path_root[pos];
            pos = self.parent[pre];
        }
        if s == pos {
            pre
        } else {
            self.child[s][0]
        }
    }
    pub fn vertex(&self, x: usize) -> usize {
        assert!(x < self.size);
        self.inverse[x]
    }
}
// ---------- end Heavy-Light decomposition ----------
// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
    (source = $s:expr, $($r:tt)*) => {
        let mut iter = $s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
    ($($r:tt)*) => {
        let s = {
            use std::io::Read;
            let mut s = String::new();
            std::io::stdin().read_to_string(&mut s).unwrap();
            s
        };
        let mut iter = s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
}

macro_rules! input_inner {
    ($iter:expr) => {};
    ($iter:expr, ) => {};
    ($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($iter, $t);
        input_inner!{$iter $($r)*}
    };
}

macro_rules! read_value {
    ($iter:expr, ( $($t:tt),* )) => {
        ( $(read_value!($iter, $t)),* )
    };
    ($iter:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
    };
    ($iter:expr, chars) => {
        read_value!($iter, String).chars().collect::<Vec<char>>()
    };
    ($iter:expr, bytes) => {
        read_value!($iter, String).bytes().collect::<Vec<u8>>()
    };
    ($iter:expr, usize1) => {
        read_value!($iter, usize) - 1
    };
    ($iter:expr, $t:ty) => {
        $iter.next().unwrap().parse::<$t>().expect("Parse error")
    };
}
// ---------- end input macro ----------

use std::io::Write;
use std::collections::*;

type Map<K, V> = BTreeMap<K, V>;
type Set<T> = BTreeSet<T>;
type Deque<T> = VecDeque<T>;

fn run() {
    input! {
        n: usize,
        e: [(usize1, usize1, u64); n - 1],
        q: usize,
        ask: [(u8, usize1); q],
    }
    let mut hld = HLD::new(n);
    for &(a, b, _) in e.iter() {
        hld.add_edge(a, b);
    }
    hld.build(0);
    let mut seg = segment_tree::PURQ::new(n, 0, |a, b| *a ^ *b);
    for &(a, b, c) in e.iter() {
        let a = hld.sub_tree(a).0;
        let b = hld.sub_tree(b).0;
        let x = a.max(b);
        seg.update(x, c);
    }
    let mut set = (1..n).collect::<Set<_>>();
    let out = std::io::stdout();
    let mut out = std::io::BufWriter::new(out.lock());
    for (op, x) in ask {
        let (l, r) = hld.sub_tree(x);
        if op == 1 {
            let d = set.range(l..r).cloned().collect::<Vec<_>>();
            for d in d {
                seg.update(d, 0);
                set.remove(&d);
            }
        } else {
            let ans = seg.find(l + 1, r);
            writeln!(out, "{}", ans).ok();
        }
    }
}

fn main() {
    run();
}
0