結果
問題 | No.1790 Subtree Deletion |
ユーザー | 👑 Kazun |
提出日時 | 2021-12-19 00:37:43 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 798 ms / 3,000 ms |
コード長 | 23,876 bytes |
コンパイル時間 | 372 ms |
コンパイル使用メモリ | 82,048 KB |
実行使用メモリ | 158,340 KB |
最終ジャッジ日時 | 2024-09-15 14:20:21 |
合計ジャッジ時間 | 9,487 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 57 ms
58,624 KB |
testcase_01 | AC | 55 ms
57,856 KB |
testcase_02 | AC | 54 ms
58,496 KB |
testcase_03 | AC | 781 ms
156,640 KB |
testcase_04 | AC | 798 ms
156,116 KB |
testcase_05 | AC | 770 ms
156,292 KB |
testcase_06 | AC | 784 ms
155,964 KB |
testcase_07 | AC | 765 ms
155,636 KB |
testcase_08 | AC | 107 ms
78,592 KB |
testcase_09 | AC | 574 ms
157,604 KB |
testcase_10 | AC | 754 ms
158,340 KB |
testcase_11 | AC | 770 ms
158,012 KB |
testcase_12 | AC | 696 ms
153,060 KB |
testcase_13 | AC | 594 ms
140,752 KB |
testcase_14 | AC | 284 ms
94,460 KB |
ソースコード
class Tree: __slots__=("N", "index", "parent", "__mutable", "root", "children", "depth", "tower", "upper_list", "deg", "des_count", "preorder_number", "euler_vertex", "euler_edge", "in_time", "out_time") def __init__(self,N,index=0): """ N 頂点 (index, index+1, ..., N-1+index) の根付き木を生成する. """ self.N=N self.index=index self.parent=[-1]*(N+index) self.__mutable=True def vertex_exist(self,x): """ 頂点 x が存在するかどうかを判定する. """ return self.index<=x<self.index+self.N def __after_seal_check(self,*vertexes): """ 木が確定していて, vertexes の頂点が存在するかどうかをチェックする. """ if self.__mutable: return False for v in vertexes: if not self.vertex_exist(v): return False return True def is_mutable(self): """ 木が確定して [いない] かどうかを返す. """ return self.__mutable #設定パート def root_set(self,root): """ 頂点 x を根に設定する.""" assert self.vertex_exist(root) assert self.__mutable self.root=root def parent_set(self,x,y): """ 頂点 x の親を y に設定する.""" assert self.vertex_exist(x) assert self.vertex_exist(y) assert self.__mutable self.parent[x]=y def child_set(self,x,y): """ 頂点 x の子の一つに y を設定する.""" assert self.vertex_exist(x) assert self.vertex_exist(y) assert self.__mutable self.parent[y]=x def seal(self): """ 木の情報を確定させる.""" assert self.__mutable assert hasattr(self,"root") a=self.index b=self.index+self.N C=[[] for _ in range(b)] p=self.parent ve=self.vertex_exist for i in range(a,b): if i!=self.root: assert ve(p[i]) C[p[i]].append(i) self.__mutable=False self.children=C #データを求める. def depth_search(self,Mode=True): """ 木の深さを求める. """ assert self.__after_seal_check() if hasattr(self,"depth"): if Mode: return self.depth else: return from collections import deque C=self.children D=[-1]*(self.index+self.N) E=[[] for _ in range(self.N)] Q=deque([self.root]) D[self.root]=0 E[0]=[self.root] while Q: x=Q.popleft() d=D[x] for y in C[x]: D[y]=d+1 E[d+1].append(y) Q.append(y) self.depth=D self.tower=E if Mode: return D def vertex_depth(self,x): """ 頂点 x の深さを求める.""" assert self.__after_seal_check(x) if not hasattr(self,"depth"): self.depth_search(Mode=False) return self.depth[x] def __upper_list(self): assert self.__after_seal_check() if hasattr(self,"upper_list"): return if not hasattr(self,"depth"): self.depth_search(False) b=max(self.depth).bit_length() X=[[-1]*(self.index+self.N) for _ in range(b)] Y=X[0] p=self.parent rg=range(self.index,self.index+self.N) for x in rg: if x!=self.root: Y[x]=p[x] else: Y[x]=self.root for k in range(1,b): Y=X[k-1] Z=X[k] for x in rg: Z[x]=Y[Y[x]] self.upper_list=X def upper(self,x,k,over=True): """ 頂点 x から見て k 個親の頂点を求める. over: (頂点 x の深さ)<k のときに True ならば根を返し, False ならばエラーを吐く. """ assert self.__after_seal_check(x) assert 0<=k if not hasattr(self,"upper_list"): self.__upper_list() if self.vertex_depth(x)<k: if over: return self.root else: raise ValueError i=0 while k: if k&1: x=self.upper_list[i][x] k>>=1 i+=1 return x def lowest_common_ancestor(self,x,y): """ 頂点 x, y の最小共通先祖 (x,yに共通する先祖で最も深いもの) を求める. """ assert self.__after_seal_check(x,y) dd=self.vertex_depth(y)-self.vertex_depth(x) if dd<0: x,y=y,x dd=-dd y=self.upper(y,dd) if x==self.root: return x if x==y: return x d=self.vertex_depth(x) b=d.bit_length() X=self.upper_list for k in range(b-1,-1,-1): px=X[k][x];py=X[k][y] if px!=py: x=px;y=py return self.upper(x,1) def __degree_count(self): assert self.__after_seal_check() if hasattr(self,"deg"): return self.deg=[0]*(self.index+self.N) for v in range(self.index,self.index+self.N): d=len(self.children[v])+1 if d==self.root: d-=1 self.deg[v]=d return def degree(self,v): """ 頂点 v の次数を求める. """ assert self.__after_seal_check(v) if not hasattr(self,"deg"): self.__degree_count() return self.deg[v] def diameter(self): """ 木の直径を求める.""" assert self.__after_seal_check() from collections import deque def bfs(start): X=[-1]*(self.index+self.N) Q=deque([start]) X[start]=0 pa=self.parent ch=self.children while Q: x=Q.popleft() if X[pa[x]]==-1: Q.append(pa[x]) X[pa[x]]=X[x]+1 for y in ch[x]: if X[y]==-1: Q.append(y) X[y]=X[x]+1 y=max(range(self.index,self.index+self.N),key=lambda x:X[x]) return y,X[y] y,_=bfs(self.root) z,d=bfs(y) return d,(y,z) def path(self,u,v): """ 頂点 u, v 間のパスを求める. """ assert self.__after_seal_check(u,v) w=self.lowest_common_ancestor(u,v) pa=self.parent X=[u] while u!=w: u=pa[u] X.append(u) Y=[v] while v!=w: v=pa[v] Y.append(v) return X+Y[-2::-1] def is_parent(self, u, v): """ u は v の親か? """ assert self.__after_seal_check(u,v) return v!=self.root and u==self.parent[v] def is_children(self, u, v): """ u は v の子か? """ assert self.__after_seal_check(u,v) return self.is_parent(v,u) def is_brother(self,u,v): """ 2つの頂点 u, v は兄弟 (親が同じ) か? """ assert self.__after_seal_check(u,v) if u==self.root or v==self.root: return False return self.parent[u]==self.parent[v] def is_ancestor(self,u,v): """ 頂点 u は頂点 v の先祖か? """ assert self.__after_seal_check(u,v) dd=self.vertex_depth(v)-self.vertex_depth(u) if dd<0: return False v=self.upper(v,dd) return u==v def is_descendant(self,u,v): """ 頂点 u は頂点 v の子孫か? """ assert self.__after_seal_check(u,v) return self.is_ancestor(v,u) def direction(self, u, v): """ 頂点 u から頂点 v へ向かうパスが頂点 u の次に通る頂点""" assert self.__after_seal_check(u,v) assert u!=v if self.is_ancestor(u,v): du=self.vertex_depth(u) dv=self.vertex_depth(v) return self.upper(v,dv-(du+1)) else: return self.parent[u] def is_leaf(self,v): """ 頂点 v は葉? """ return not bool(self.children[v]) def distance(self,u,v): """ 2頂点 u, v 間の距離を求める. """ assert self.__after_seal_check(u,v) dep=self.vertex_depth return dep(u)+dep(v)-2*dep(self.lowest_common_ancestor(u,v)) def __descendant_count(self): assert self.__after_seal_check() if hasattr(self,"des_count"): return if not hasattr(self,"tower"): self.depth_search(False) self.des_count=[1]*(self.index+self.N) pa=self.parent for T in self.tower[:0:-1]: for x in T: self.des_count[pa[x]]+=self.des_count[x] return def descendant_count(self, v): """ 頂点 v の子孫の数を求める. """ assert self.__after_seal_check(v) self.__descendant_count() return self.des_count[v] def subtree_size(self, v): """ 頂点 v を根とした部分根付き木のサイズを求める. """ return self.descendant_count(v) def preorder(self,v): """ 頂点 v の行きがけ順を求める. """ assert self.__after_seal_check(v) if hasattr(self,"preorder_number"): self.preorder_number[v] from collections import deque Q=deque([self.root]) T=[-1]*(self.N+self.index) p=1 while Q: x=Q.popleft() T[x]=p p+=1 C=self.children[x] for y in C: Q.append(y) self.preorder_number=T return T[v] def dfs_yielder(self, order=None): """ DFS における頂点の出入りを yield する. 以下のような関数を (仮想的に) 実行する. def dfs(v): yield (v,1) #頂点 v に入る for w in self.children[v]: dfs(w) #頂点 v を出る. yield (v,0) order (1変数関数): for w in self.children[v] の順番を指定する (昇順) (※ 無い場合は任意, 破壊的) """ assert self.__after_seal_check() #最初 yield (self.root,1) v=self.root ch=self.children pa=self.parent R=[-1]*self.index+[len(ch[x]) for x in range(self.index,self.index+self.N)] S=[0]*(self.index+self.N) if order!=None: for w in range(self.index,self.index+self.N): ch[w].sort(key=order) while True: if R[v]==S[v]: #もし,進めないならば yield (v,0) #頂点vを出る if v==self.root: break else: v=pa[v] else: #進める w=v v=ch[v][S[v]] S[w]+=1 yield (v,1) def top_down(self): """ 木の頂点から yield する. """ assert self.__after_seal_check() if not hasattr(self,"tower"): self.depth_search(False) for E in self.tower: for v in E: yield v def bottom_up(self): """ 木の根から yield する. """ assert self.__after_seal_check() if not hasattr(self,"tower"): self.depth_search(False) for E in self.tower[::-1]: for v in E: yield v def tree_dp_from_leaf(self,merge,unit,f,g,Mode=False): """ 葉から木 DP 行う. [input] merge: 可換モノイドを成す2項演算 M x M -> M unit: Mの単位元 f: X x V x V → M: f(x,v,w): v が親, w が子 g: M x V → X: g(x,v) Mode: False → 根の値のみ, True → 全ての値 [補足] 頂点 v の子が x,y,z,...のとき, 更新式は * を merge として dp[v]=g(f(dp[x],v,x)*f(dp[y],v,y)*f(dp[z],v,z)*..., v) になる. """ assert self.__after_seal_check() data=[unit]*(self.index+self.N) ch=self.children for x in self.bottom_up(): for y in ch[x]: data[x]=merge(data[x],f(data[y],x,y)) data[x]=g(data[x],x) if Mode: return data else: return data[self.root] def tree_dp_from_root(self,f,alpha): """ 根から木 DP を行う. [input] alpha: 初期値 f: X x V x V → X: f(x,v,w): v が親, w が子 [補足] 頂点 v の親が x のとき, 更新式は dp[v]=f(dp[x],x,v) (x!=root), alpha (x==root) になる. """ assert self.__after_seal_check() data=[0]*(self.index+self.N) ch=self.children data[self.root]=alpha for x in self.top_down(): for y in ch[x]: data[y]=f(data[x],x,y) return data def rerooting(self,merge,unit,f,g): """ 全方位木 DP を行う. [input] merge: 可換モノイドを成す2項演算 M x M -> M unit: M の単位元 f: X x V x V → M: f(x,v,w): v が親, w が子 g: M x V → X: g(x,v) ※ tree_dp_from_leaf と同じ形式 [補足] 頂点 v の子が x,y,z,...のとき, 更新式は dp[v]=g(f(dp[x],v,x)*f(dp[y],v,y)*f(dp[z],v,z)*..., v) になる. """ assert self.__after_seal_check() upper=[unit]*(self.index+self.N) lower=[unit]*(self.index+self.N) ch=self.children pa=self.parent #DFSパート lower=self.tree_dp_from_leaf(merge,unit,f,g,True) #BFSパート for v in self.top_down(): cc=ch[v] #累積マージ deg=len(cc) Left=[unit]; x=unit for c in cc: x=merge(x,f(lower[c],v,c)) Left.append(x) Right=[unit]; y=unit for c in cc[::-1]: y=merge(y,f(lower[c],v,c)) Right.append(y) Right=Right[::-1] for i in range(deg): c=cc[i] a=merge(Left[i],Right[i+1]) if v!=self.root: b=merge(a,f(upper[v],v,pa[v])) else: b=a upper[c]=g(b,v) A=[unit]*(self.index+self.N) for v in range(self.index,self.index+self.N): if v!=self.root: a=f(upper[v],v,pa[v]) else: a=unit for c in ch[v]: a=merge(a,f(lower[c],v,c)) A[v]=g(a,v) return A def euler_tour_vertex(self, order=None): """ オイラーツアー (vertex) に関する計算を行う. order: 頂点の順番を指定する (破壊的) """ assert self.__after_seal_check() if hasattr(self,"euler_vertex"): return #最初 X=[-1]*(2*self.N-1) #X: Euler Tour (vertex) のリスト v=self.root ch=self.children if order!=None: for i in range(self.index,self.index+self.N): ch[i].sort(key=order) pa=self.parent R=[-1]*self.index+[len(ch[x]) for x in range(self.index,self.index+self.N)] S=[0]*(self.index+self.N) for t in range(2*self.N-1): X[t]=v if R[v]==S[v]: v=pa[v] else: #進める w=v v=ch[v][S[v]] S[w]+=1 self.euler_vertex=X self.in_time=[-1]*(self.index+self.N) self.out_time=[-1]*(self.index+self.N) for t in range(2*self.N-1): v=X[t] if self.in_time[v]==-1: self.in_time[v]=self.out_time[v]=t else: self.out_time[v]=t def euler_tour_edge(self): """ オイラーツアー (edge) に関する計算を行う. (u,v,k): u から v へ向かう (k=+1 のときは葉へ進む向き, k=-1 のときは根へ進む向き) """ assert self.__after_seal_check() if hasattr(self,"euler_edge"): return if not hasattr(self, "euler_vertex"): self.euler_tour_vertex() self.euler_edge=[0]*(2*(self.N-1)) euler=self.euler_vertex pa=self.parent for t in range(2*(self.N-1)): u=euler[t]; v=euler[t+1] k=1 if u==pa[v] else -1 self.euler_edge[t]=(u,v,k) def centroid(self, all=False): """ 木の重心を求める all: False → 重心のうちの1頂点. True → 全ての重心. """ assert self.__after_seal_check() M=self.N//2 if not hasattr(self,"des_count"): self.__descendant_count() G=[]; ch=self.children; des=self.des_count for v in range(self.index, self.index+self.N): if self.N-des[v]>M: break flag=1 for x in ch[v]: if des[x]>M: flag=0 break if flag: if all: G.append(v) else: return v return G def generated_subtree(self,S): """ S を含む最小の部分木の頂点を求める. """ assert self.__after_seal_check(*S) if not hasattr(self, "in_time"): self.euler_tour_vertex() S=sorted(set(S),key=lambda i:self.in_time[i]) K=len(S) T=set() for i in range(K-1): for a in self.path(S[i],S[i+1]): T.add(a) return sorted(T) def generated_subtree_size(self,S): """ S を含む最小の部分木のサイズを求める. """ assert self.__after_seal_check(*S) if not hasattr(self, "in_time"): self.euler_tour_vertex() S=sorted(set(S),key=lambda i:self.in_time[i]) K=len(S) X=0 for i in range(K-1): X+=self.distance(S[i],S[i+1]) return (X+self.distance(S[-1],S[0]))//2 #================================================= def Making_Tree(N,E,root,index=0): """木を作る. N:頂点数 E: 辺のリスト root: 根 """ from collections import deque F=[[] for _ in range(index+N)] for u,v in E: assert index<=u<index+N assert index<=v<index+N assert u!=v F[u].append(v) F[v].append(u) X=[-1]*(index+N) X[root]=root C=[[] for _ in range(index+N)] Q=deque([root]) while Q: x=Q.popleft() for y in F[x]: if X[y]==-1: X[y]=x Q.append(y) C[x].append(y) T=Tree(N,index) T.root_set(root) T.parent=X T.children=C T.seal() return T #================================================== class Binary_Indexed_Tree(): def __init__(self, L, calc, unit, inv, index=1): """ calc を演算とする N 項の Binary Indexed Tree を作成 calc: 演算 (2変数関数, 可換群) unit: 群 calc の単位元 (x+e=e+x=xを満たすe) inv : 群 calc の逆元 (1変数関数, x+y(x)=y(x)+x=e をみたす y(x)) """ self.calc=calc self.unit=unit self.inv=inv self.index=index N=len(L) d=max(1,(N-1).bit_length()) k=2**d X=[None]+[unit]*k self.num=k self.depth=d if L: for i in range(len(L)): p=i+1 while p<=k: X[p]=self.calc(X[p],L[i]) p+=p&(-p) self.data=X def index_number(self, k, index=1): """ 第 k 要素の値を出力する. k : 数列の要素 index: 先頭の要素の番号 """ return self.sum(k,k,index) def add(self, k, x, index=1): """ 第 k 要素に x を加え, 更新を行う. k : 数列の要素 x : 加える値 index: 先頭の要素の番号 """ p=k+(1-index) while p<=self.num: self.data[p]=self.calc(self.data[p],x) p+=p&(-p) def update(self, k, x, index=1): """ 第 k 要素を x に変え, 更新を行う. k: 数列の要素 x: 更新後の値 """ a=self.index_number(k,index) y=self.calc(self.inv(a),x) self.add(k,y,index) def sum(self, From, To, index=1): """ 第 From 要素から第 To 要素までの総和を求める. ※From!=1を使うならば, 群でなくてはならない. From : 始まり To : 終わり index: 先頭の要素の番号 """ alpha=max(1,From+(1-index)) beta=min(self.num,To+(1-index)) if alpha==1: return self.__section(beta) else: return self.calc(self.inv(self.__section(alpha-1)),self.__section(beta)) def __section(self,x): """ B[1]+...+B[x] を求める. """ S=self.unit while x>0: S=self.calc(self.data[x],S) x-=x&(-x) return S def all_sum(self): return self.data[-1] def binary_search(self, cond, index=1): """ cond(B[1]+...+B[k]) を満たす最小の k を返す. cond: 単調増加 ※ cond(uint)=True の場合の返り値は index-1 ※ cond(B[1]+...+B[k]) なる k が存在しない場合の返り値は self.num+index """ if cond(self.unit): return index-1 j=0 r=self.num t=r data=self.data alpha=self.unit for _ in range(self.depth+1): if j+t<=self.num: beta=self.calc(alpha,data[j+t]) if not cond(beta): alpha=beta j+=t t>>=1 return j+index def __getitem__(self,index): if isinstance(index,int): return self.index_number(index,self.index) else: return [self.index_number(t,self.index) for t in index] def __setitem__(self,index,val): self.update(index,val,self.index) #================================================== def encode(u,v): if u>v: u,v=v,u return u*(N+10)+v def decode(code): return divmod(code,N+10) #================================================== from operator import xor from collections import deque import sys input=sys.stdin.readline write=sys.stdout.write N=int(input()) E=[] C={} for _ in range(N-1): L,R,A=map(int,input().split()) C[encode(L,R)]=A E.append((L,R)) T=Making_Tree(N,E,1,1) T.euler_tour_vertex() S=Binary_Indexed_Tree([0]*(2*N-1),xor,0,lambda x:x,0) for v in range(2,N+1): code=encode(v,T.parent[v]) S.add(T.in_time[v],C[code],0) R=[set(T.children[x]) for x in range(N+1)] P=[1]*(N+1); P[0]=0 X=[] Q=int(input()) for _ in range(Q): t,x=map(int,input().split()) if t==1: if P[x]==0: continue M=[] H=[x] while H: u=H.pop() M.append(u) for v in R[u]: H.append(v) for u in M: P[u]=0 R[u]=set() code=encode(u,T.parent[u]) S.update(T.in_time[u],0,0) R[T.parent[x]].discard(x) else: if T.in_time[x]+1<=T.out_time[x]-1: X.append(S.sum(T.in_time[x]+1,T.out_time[x]-1,0)) else: X.append(0) write("\n".join(map(str,X)))