結果
問題 | No.1790 Subtree Deletion |
ユーザー | 👑 emthrm |
提出日時 | 2021-12-19 02:47:56 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 159 ms / 3,000 ms |
コード長 | 13,864 bytes |
コンパイル時間 | 2,814 ms |
コンパイル使用メモリ | 219,228 KB |
実行使用メモリ | 23,696 KB |
最終ジャッジ日時 | 2024-09-15 14:23:27 |
合計ジャッジ時間 | 5,906 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 153 ms
23,572 KB |
testcase_04 | AC | 158 ms
23,572 KB |
testcase_05 | AC | 159 ms
23,696 KB |
testcase_06 | AC | 159 ms
23,568 KB |
testcase_07 | AC | 156 ms
23,568 KB |
testcase_08 | AC | 17 ms
5,376 KB |
testcase_09 | AC | 133 ms
23,652 KB |
testcase_10 | AC | 158 ms
23,628 KB |
testcase_11 | AC | 154 ms
23,560 KB |
testcase_12 | AC | 113 ms
22,476 KB |
testcase_13 | AC | 111 ms
19,956 KB |
testcase_14 | AC | 39 ms
7,808 KB |
ソースコード
#define _USE_MATH_DEFINES #include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 1000000007; // constexpr int MOD = 998244353; constexpr int DY[]{1, 0, -1, 0}, DX[]{0, -1, 0, 1}; constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}, DX8[]{0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template <typename CostType> struct Edge { int src, dst; CostType cost; Edge(int src, int dst, CostType cost = 0) : src(src), dst(dst), cost(cost) {} inline bool operator<(const Edge &x) const { return cost != x.cost ? cost < x.cost : dst != x.dst ? dst < x.dst : src < x.src; } inline bool operator<=(const Edge &x) const { return !(x < *this); } inline bool operator>(const Edge &x) const { return x < *this; } inline bool operator>=(const Edge &x) const { return !(*this < x); } }; template <typename CostType> struct HeavyLightDecomposition { std::vector<int> parent, subtree, id, inv, head; std::vector<CostType> cost; HeavyLightDecomposition(const std::vector<std::vector<Edge<CostType>>> &graph, int root = 0) : graph(graph) { int n = graph.size(); parent.assign(n, -1); subtree.assign(n, 1); id.resize(n); inv.resize(n); head.resize(n); dfs1(root); head[root] = root; int now_id = 0; dfs2(root, now_id); } template <typename Fn> void v_update(int u, int v, Fn f) const { while (true) { if (id[u] > id[v]) std::swap(u, v); f(std::max(id[head[v]], id[u]), id[v] + 1); if (head[u] == head[v]) return; v = parent[head[v]]; } } template <typename T, typename F, typename G> T v_query(int u, int v, F f, G g, const T ID) const { T left = ID, right = ID; while (true) { if (id[u] > id[v]) { std::swap(u, v); std::swap(left, right); } left = g(left, f(std::max(id[head[v]], id[u]), id[v] + 1)); if (head[u] == head[v]) break; v = parent[head[v]]; } return g(left, right); } template <typename Fn> void subtree_v_update(int ver, Fn f) const { f(id[ver], id[ver] + subtree[ver]); } template <typename T, typename Fn> T subtree_v_query(int ver, Fn f) const { return f(id[ver], id[ver] + subtree[ver]); } template <typename Fn> void e_update(int u, int v, Fn f) const { while (true) { if (id[u] > id[v]) std::swap(u, v); if (head[u] == head[v]) { f(id[u], id[v]); break; } else { f(id[head[v]] - 1, id[v]); v = parent[head[v]]; } } } template <typename T, typename F, typename G> T e_query(int u, int v, F f, G g, const T ID) const { T left = ID, right = ID; while (true) { if (id[u] > id[v]) { std::swap(u, v); std::swap(left, right); } if (head[u] == head[v]) { left = g(left, f(id[u], id[v])); break; } else { left = g(left, f(id[head[v]] - 1, id[v])); v = parent[head[v]]; } } return g(left, right); } template <typename Fn> void subtree_e_update(int ver, Fn f) const { f(id[ver], id[ver] + subtree[ver] - 1); } template <typename T, typename Fn> T subtree_e_query(int ver, Fn f) const { return f(id[ver], id[ver] + subtree[ver] - 1); } int lowest_common_ancestor(int u, int v) const { while (true) { if (id[u] > id[v]) std::swap(u, v); if (head[u] == head[v]) return u; v = parent[head[v]]; } } private: std::vector<std::vector<Edge<CostType>>> graph; void dfs1(int ver) { for (Edge<CostType> &e : graph[ver]) { if (e.dst != parent[ver]) { parent[e.dst] = ver; dfs1(e.dst); subtree[ver] += subtree[e.dst]; if (subtree[e.dst] > subtree[graph[ver].front().dst]) std::swap(e, graph[ver].front()); } } } void dfs2(int ver, int &now_id) { id[ver] = now_id++; inv[id[ver]] = ver; for (const Edge<CostType> &e : graph[ver]) { if (e.dst != parent[ver]) { head[e.dst] = (e.dst == graph[ver].front().dst ? head[ver] : e.dst); cost.emplace_back(e.cost); dfs2(e.dst, now_id); } } } }; template <typename T> struct LazySegmentTree { using Monoid = typename T::Monoid; using OperatorMonoid = typename T::OperatorMonoid; LazySegmentTree(int n) : LazySegmentTree(std::vector<Monoid>(n, T::m_id())) {} LazySegmentTree(const std::vector<Monoid> &a) : n(a.size()) { while ((1 << height) < n) ++height; p2 = 1 << height; lazy.assign(p2, T::o_id()); dat.assign(p2 << 1, T::m_id()); for (int i = 0; i < n; ++i) dat[i + p2] = a[i]; for (int i = p2 - 1; i > 0; --i) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]); } void set(int idx, const Monoid val) { idx += p2; for (int i = height; i > 0; --i) propagate(idx >> i); dat[idx] = val; for (int i = 1; i <= height; ++i) { int current_idx = idx >> i; dat[current_idx] = T::m_merge(dat[current_idx << 1], dat[(current_idx << 1) + 1]); } } void apply(int idx, const OperatorMonoid val) { idx += p2; for (int i = height; i > 0; --i) propagate(idx >> i); dat[idx] = T::apply(dat[idx], val); for (int i = 1; i <= height; ++i) { int current_idx = idx >> i; dat[current_idx] = T::m_merge(dat[current_idx << 1], dat[(current_idx << 1) + 1]); } } void apply(int left, int right, const OperatorMonoid val) { if (right <= left) return; left += p2; right += p2; int left_ctz = __builtin_ctz(left); for (int i = height; i > left_ctz; --i) propagate(left >> i); int right_ctz = __builtin_ctz(right); for (int i = height; i > right_ctz; --i) propagate(right >> i); for (int l = left, r = right; l < r; l >>= 1, r >>= 1) { if (l & 1) sub_apply(l++, val); if (r & 1) sub_apply(--r, val); } for (int i = left >> (left_ctz + 1); i > 0; i >>= 1) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]); for (int i = right >> (right_ctz + 1); i > 0; i >>= 1) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]); } Monoid get(int left, int right) { if (right <= left) return T::m_id(); left += p2; right += p2; int left_ctz = __builtin_ctz(left); for (int i = height; i > left_ctz; --i) propagate(left >> i); int right_ctz = __builtin_ctz(right); for (int i = height; i > right_ctz; --i) propagate(right >> i); Monoid l_res = T::m_id(), r_res = T::m_id(); for (; left < right; left >>= 1, right >>= 1) { if (left & 1) l_res = T::m_merge(l_res, dat[left++]); if (right & 1) r_res = T::m_merge(dat[--right], r_res); } return T::m_merge(l_res, r_res); } Monoid operator[](const int idx) { int node = idx + p2; for (int i = height; i > 0; --i) propagate(node >> i); return dat[node]; } template <typename G> int find_right(int left, G g) { if (left >= n) return n; left += p2; for (int i = height; i > 0; --i) propagate(left >> i); Monoid val = T::m_id(); do { while (!(left & 1)) left >>= 1; Monoid nx = T::m_merge(val, dat[left]); if (!g(nx)) { while (left < p2) { propagate(left); left <<= 1; nx = T::m_merge(val, dat[left]); if (g(nx)) { val = nx; ++left; } } return left - p2; } val = nx; ++left; } while (__builtin_popcount(left) > 1); return n; } template <typename G> int find_left(int right, G g) { if (right <= 0) return -1; right += p2; for (int i = height; i > 0; --i) propagate((right - 1) >> i); Monoid val = T::m_id(); do { --right; while (right > 1 && (right & 1)) right >>= 1; Monoid nx = T::m_merge(dat[right], val); if (!g(nx)) { while (right < p2) { propagate(right); right = (right << 1) + 1; nx = T::m_merge(dat[right], val); if (g(nx)) { val = nx; --right; } } return right - p2; } val = nx; } while (__builtin_popcount(right) > 1); return -1; } private: int n, p2, height = 0; std::vector<Monoid> dat; std::vector<OperatorMonoid> lazy; void sub_apply(int idx, const OperatorMonoid &val) { dat[idx] = T::apply(dat[idx], val); if (idx < p2) lazy[idx] = T::o_merge(lazy[idx], val); } void propagate(int idx) { // assert(1 <= idx && idx < p2); sub_apply(idx << 1, lazy[idx]); sub_apply((idx << 1) + 1, lazy[idx]); lazy[idx] = T::o_id(); } }; namespace monoid { template <typename T> struct RangeMinimumAndUpdateQuery { using Monoid = T; using OperatorMonoid = T; static constexpr Monoid m_id() { return std::numeric_limits<Monoid>::max(); } static constexpr OperatorMonoid o_id() { return std::numeric_limits<OperatorMonoid>::max(); } static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::min(a, b); } static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return b == o_id() ? a : b; } static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return b == o_id()? a : b; } }; template <typename T> struct RangeMaximumAndUpdateQuery { using Monoid = T; using OperatorMonoid = T; static constexpr Monoid m_id() { return std::numeric_limits<Monoid>::lowest(); } static constexpr OperatorMonoid o_id() { return std::numeric_limits<OperatorMonoid>::lowest(); } static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::max(a, b); } static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return b == o_id() ? a : b; } static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return b == o_id()? a : b; } }; template <typename T, T Inf> struct RangeMinimumAndAddQuery { using Monoid = T; using OperatorMonoid = T; static constexpr Monoid m_id() { return Inf; } static constexpr OperatorMonoid o_id() { return 0; } static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::min(a, b); } static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return a + b; } static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return a + b; } }; template <typename T, T Inf> struct RangeMaximumAndAddQuery { using Monoid = T; using OperatorMonoid = T; static constexpr Monoid m_id() { return -Inf; } static constexpr OperatorMonoid o_id() { return 0; } static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::max(a, b); } static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return a + b; } static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return a + b; } }; template <typename T> struct RangeSumAndUpdateQuery { using Monoid = struct { T sum; int len; }; using OperatorMonoid = T; static std::vector<Monoid> init(int n) { return std::vector<Monoid>(n, Monoid{0, 1}); } static constexpr Monoid m_id() { return {0, 0}; } static constexpr OperatorMonoid o_id() { return std::numeric_limits<OperatorMonoid>::max(); } static Monoid m_merge(const Monoid &a, const Monoid &b) { return Monoid{a.sum + b.sum, a.len + b.len}; } static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return b == o_id() ? a : b; } static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return Monoid{b == o_id() ? a.sum : b * a.len, a.len}; } }; template <typename T> struct RangeSumAndAddQuery { using Monoid = struct { T sum; int len; }; using OperatorMonoid = T; static std::vector<Monoid> init(int n) { return std::vector<Monoid>(n, Monoid{0, 1}); } static constexpr Monoid m_id() { return {0, 0}; } static constexpr OperatorMonoid o_id() { return 0; } static Monoid m_merge(const Monoid &a, const Monoid &b) { return Monoid{a.sum + b.sum, a.len + b.len}; } static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return a + b; } static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return Monoid{a.sum + b * a.len, a.len}; } }; } // monoid int main() { struct RangeXorAndUpdateQuery { using Monoid = ll; using OperatorMonoid = ll; static constexpr Monoid m_id() { return 0; } static constexpr OperatorMonoid o_id() { return -LINF; } static Monoid m_merge(const Monoid& a, const Monoid& b) { return a ^ b; } static OperatorMonoid o_merge(const OperatorMonoid& a, const OperatorMonoid& b) { return b == o_id() ? a : b; } static Monoid apply(const Monoid& a, const OperatorMonoid& b) { return b == o_id() ? a : b; } }; int n; cin >> n; vector<vector<Edge<ll>>> graph(n); REP(_, n - 1) { int l, r; ll a; cin >> l >> r >> a; --l; --r; graph[l].emplace_back(l, r, a); graph[r].emplace_back(r, l, a); } HeavyLightDecomposition hld(graph, 0); LazySegmentTree<RangeXorAndUpdateQuery> seg(hld.cost); int q; cin >> q; while (q--) { int t, x; cin >> t >> x; --x; if (t == 1) { hld.subtree_e_update(x, [&](int l, int r) -> void { return seg.apply(l, r, 0); }); hld.e_update(hld.parent[x], x, [&](int l, int r) -> void { return seg.apply(l, r, 0); }); } else if (t == 2) { cout << hld.subtree_e_query<ll>(x, [&](int l, int r) -> ll { return seg.get(l, r); }) << '\n'; } } return 0; }