結果
| 問題 |
No.1790 Subtree Deletion
|
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2021-12-19 02:47:56 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 173 ms / 3,000 ms |
| コード長 | 13,864 bytes |
| コンパイル時間 | 2,566 ms |
| コンパイル使用メモリ | 211,388 KB |
| 最終ジャッジ日時 | 2025-01-27 03:37:40 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 12 |
ソースコード
#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 1000000007;
// constexpr int MOD = 998244353;
constexpr int DY[]{1, 0, -1, 0}, DX[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}, DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <typename CostType>
struct Edge {
int src, dst; CostType cost;
Edge(int src, int dst, CostType cost = 0) : src(src), dst(dst), cost(cost) {}
inline bool operator<(const Edge &x) const {
return cost != x.cost ? cost < x.cost : dst != x.dst ? dst < x.dst : src < x.src;
}
inline bool operator<=(const Edge &x) const { return !(x < *this); }
inline bool operator>(const Edge &x) const { return x < *this; }
inline bool operator>=(const Edge &x) const { return !(*this < x); }
};
template <typename CostType>
struct HeavyLightDecomposition {
std::vector<int> parent, subtree, id, inv, head;
std::vector<CostType> cost;
HeavyLightDecomposition(const std::vector<std::vector<Edge<CostType>>> &graph, int root = 0) : graph(graph) {
int n = graph.size();
parent.assign(n, -1);
subtree.assign(n, 1);
id.resize(n);
inv.resize(n);
head.resize(n);
dfs1(root);
head[root] = root;
int now_id = 0;
dfs2(root, now_id);
}
template <typename Fn>
void v_update(int u, int v, Fn f) const {
while (true) {
if (id[u] > id[v]) std::swap(u, v);
f(std::max(id[head[v]], id[u]), id[v] + 1);
if (head[u] == head[v]) return;
v = parent[head[v]];
}
}
template <typename T, typename F, typename G>
T v_query(int u, int v, F f, G g, const T ID) const {
T left = ID, right = ID;
while (true) {
if (id[u] > id[v]) {
std::swap(u, v);
std::swap(left, right);
}
left = g(left, f(std::max(id[head[v]], id[u]), id[v] + 1));
if (head[u] == head[v]) break;
v = parent[head[v]];
}
return g(left, right);
}
template <typename Fn>
void subtree_v_update(int ver, Fn f) const { f(id[ver], id[ver] + subtree[ver]); }
template <typename T, typename Fn>
T subtree_v_query(int ver, Fn f) const { return f(id[ver], id[ver] + subtree[ver]); }
template <typename Fn>
void e_update(int u, int v, Fn f) const {
while (true) {
if (id[u] > id[v]) std::swap(u, v);
if (head[u] == head[v]) {
f(id[u], id[v]);
break;
} else {
f(id[head[v]] - 1, id[v]);
v = parent[head[v]];
}
}
}
template <typename T, typename F, typename G>
T e_query(int u, int v, F f, G g, const T ID) const {
T left = ID, right = ID;
while (true) {
if (id[u] > id[v]) {
std::swap(u, v);
std::swap(left, right);
}
if (head[u] == head[v]) {
left = g(left, f(id[u], id[v]));
break;
} else {
left = g(left, f(id[head[v]] - 1, id[v]));
v = parent[head[v]];
}
}
return g(left, right);
}
template <typename Fn>
void subtree_e_update(int ver, Fn f) const { f(id[ver], id[ver] + subtree[ver] - 1); }
template <typename T, typename Fn>
T subtree_e_query(int ver, Fn f) const { return f(id[ver], id[ver] + subtree[ver] - 1); }
int lowest_common_ancestor(int u, int v) const {
while (true) {
if (id[u] > id[v]) std::swap(u, v);
if (head[u] == head[v]) return u;
v = parent[head[v]];
}
}
private:
std::vector<std::vector<Edge<CostType>>> graph;
void dfs1(int ver) {
for (Edge<CostType> &e : graph[ver]) {
if (e.dst != parent[ver]) {
parent[e.dst] = ver;
dfs1(e.dst);
subtree[ver] += subtree[e.dst];
if (subtree[e.dst] > subtree[graph[ver].front().dst]) std::swap(e, graph[ver].front());
}
}
}
void dfs2(int ver, int &now_id) {
id[ver] = now_id++;
inv[id[ver]] = ver;
for (const Edge<CostType> &e : graph[ver]) {
if (e.dst != parent[ver]) {
head[e.dst] = (e.dst == graph[ver].front().dst ? head[ver] : e.dst);
cost.emplace_back(e.cost);
dfs2(e.dst, now_id);
}
}
}
};
template <typename T>
struct LazySegmentTree {
using Monoid = typename T::Monoid;
using OperatorMonoid = typename T::OperatorMonoid;
LazySegmentTree(int n) : LazySegmentTree(std::vector<Monoid>(n, T::m_id())) {}
LazySegmentTree(const std::vector<Monoid> &a) : n(a.size()) {
while ((1 << height) < n) ++height;
p2 = 1 << height;
lazy.assign(p2, T::o_id());
dat.assign(p2 << 1, T::m_id());
for (int i = 0; i < n; ++i) dat[i + p2] = a[i];
for (int i = p2 - 1; i > 0; --i) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]);
}
void set(int idx, const Monoid val) {
idx += p2;
for (int i = height; i > 0; --i) propagate(idx >> i);
dat[idx] = val;
for (int i = 1; i <= height; ++i) {
int current_idx = idx >> i;
dat[current_idx] = T::m_merge(dat[current_idx << 1], dat[(current_idx << 1) + 1]);
}
}
void apply(int idx, const OperatorMonoid val) {
idx += p2;
for (int i = height; i > 0; --i) propagate(idx >> i);
dat[idx] = T::apply(dat[idx], val);
for (int i = 1; i <= height; ++i) {
int current_idx = idx >> i;
dat[current_idx] = T::m_merge(dat[current_idx << 1], dat[(current_idx << 1) + 1]);
}
}
void apply(int left, int right, const OperatorMonoid val) {
if (right <= left) return;
left += p2;
right += p2;
int left_ctz = __builtin_ctz(left);
for (int i = height; i > left_ctz; --i) propagate(left >> i);
int right_ctz = __builtin_ctz(right);
for (int i = height; i > right_ctz; --i) propagate(right >> i);
for (int l = left, r = right; l < r; l >>= 1, r >>= 1) {
if (l & 1) sub_apply(l++, val);
if (r & 1) sub_apply(--r, val);
}
for (int i = left >> (left_ctz + 1); i > 0; i >>= 1) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]);
for (int i = right >> (right_ctz + 1); i > 0; i >>= 1) dat[i] = T::m_merge(dat[i << 1], dat[(i << 1) + 1]);
}
Monoid get(int left, int right) {
if (right <= left) return T::m_id();
left += p2;
right += p2;
int left_ctz = __builtin_ctz(left);
for (int i = height; i > left_ctz; --i) propagate(left >> i);
int right_ctz = __builtin_ctz(right);
for (int i = height; i > right_ctz; --i) propagate(right >> i);
Monoid l_res = T::m_id(), r_res = T::m_id();
for (; left < right; left >>= 1, right >>= 1) {
if (left & 1) l_res = T::m_merge(l_res, dat[left++]);
if (right & 1) r_res = T::m_merge(dat[--right], r_res);
}
return T::m_merge(l_res, r_res);
}
Monoid operator[](const int idx) {
int node = idx + p2;
for (int i = height; i > 0; --i) propagate(node >> i);
return dat[node];
}
template <typename G>
int find_right(int left, G g) {
if (left >= n) return n;
left += p2;
for (int i = height; i > 0; --i) propagate(left >> i);
Monoid val = T::m_id();
do {
while (!(left & 1)) left >>= 1;
Monoid nx = T::m_merge(val, dat[left]);
if (!g(nx)) {
while (left < p2) {
propagate(left);
left <<= 1;
nx = T::m_merge(val, dat[left]);
if (g(nx)) {
val = nx;
++left;
}
}
return left - p2;
}
val = nx;
++left;
} while (__builtin_popcount(left) > 1);
return n;
}
template <typename G>
int find_left(int right, G g) {
if (right <= 0) return -1;
right += p2;
for (int i = height; i > 0; --i) propagate((right - 1) >> i);
Monoid val = T::m_id();
do {
--right;
while (right > 1 && (right & 1)) right >>= 1;
Monoid nx = T::m_merge(dat[right], val);
if (!g(nx)) {
while (right < p2) {
propagate(right);
right = (right << 1) + 1;
nx = T::m_merge(dat[right], val);
if (g(nx)) {
val = nx;
--right;
}
}
return right - p2;
}
val = nx;
} while (__builtin_popcount(right) > 1);
return -1;
}
private:
int n, p2, height = 0;
std::vector<Monoid> dat;
std::vector<OperatorMonoid> lazy;
void sub_apply(int idx, const OperatorMonoid &val) {
dat[idx] = T::apply(dat[idx], val);
if (idx < p2) lazy[idx] = T::o_merge(lazy[idx], val);
}
void propagate(int idx) {
// assert(1 <= idx && idx < p2);
sub_apply(idx << 1, lazy[idx]);
sub_apply((idx << 1) + 1, lazy[idx]);
lazy[idx] = T::o_id();
}
};
namespace monoid {
template <typename T>
struct RangeMinimumAndUpdateQuery {
using Monoid = T;
using OperatorMonoid = T;
static constexpr Monoid m_id() { return std::numeric_limits<Monoid>::max(); }
static constexpr OperatorMonoid o_id() { return std::numeric_limits<OperatorMonoid>::max(); }
static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::min(a, b); }
static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return b == o_id() ? a : b; }
static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return b == o_id()? a : b; }
};
template <typename T>
struct RangeMaximumAndUpdateQuery {
using Monoid = T;
using OperatorMonoid = T;
static constexpr Monoid m_id() { return std::numeric_limits<Monoid>::lowest(); }
static constexpr OperatorMonoid o_id() { return std::numeric_limits<OperatorMonoid>::lowest(); }
static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::max(a, b); }
static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return b == o_id() ? a : b; }
static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return b == o_id()? a : b; }
};
template <typename T, T Inf>
struct RangeMinimumAndAddQuery {
using Monoid = T;
using OperatorMonoid = T;
static constexpr Monoid m_id() { return Inf; }
static constexpr OperatorMonoid o_id() { return 0; }
static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::min(a, b); }
static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return a + b; }
static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return a + b; }
};
template <typename T, T Inf>
struct RangeMaximumAndAddQuery {
using Monoid = T;
using OperatorMonoid = T;
static constexpr Monoid m_id() { return -Inf; }
static constexpr OperatorMonoid o_id() { return 0; }
static Monoid m_merge(const Monoid &a, const Monoid &b) { return std::max(a, b); }
static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return a + b; }
static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return a + b; }
};
template <typename T>
struct RangeSumAndUpdateQuery {
using Monoid = struct {
T sum;
int len;
};
using OperatorMonoid = T;
static std::vector<Monoid> init(int n) { return std::vector<Monoid>(n, Monoid{0, 1}); }
static constexpr Monoid m_id() { return {0, 0}; }
static constexpr OperatorMonoid o_id() { return std::numeric_limits<OperatorMonoid>::max(); }
static Monoid m_merge(const Monoid &a, const Monoid &b) { return Monoid{a.sum + b.sum, a.len + b.len}; }
static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return b == o_id() ? a : b; }
static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return Monoid{b == o_id() ? a.sum : b * a.len, a.len}; }
};
template <typename T>
struct RangeSumAndAddQuery {
using Monoid = struct {
T sum;
int len;
};
using OperatorMonoid = T;
static std::vector<Monoid> init(int n) { return std::vector<Monoid>(n, Monoid{0, 1}); }
static constexpr Monoid m_id() { return {0, 0}; }
static constexpr OperatorMonoid o_id() { return 0; }
static Monoid m_merge(const Monoid &a, const Monoid &b) { return Monoid{a.sum + b.sum, a.len + b.len}; }
static OperatorMonoid o_merge(const OperatorMonoid &a, const OperatorMonoid &b) { return a + b; }
static Monoid apply(const Monoid &a, const OperatorMonoid &b) { return Monoid{a.sum + b * a.len, a.len}; }
};
} // monoid
int main() {
struct RangeXorAndUpdateQuery {
using Monoid = ll;
using OperatorMonoid = ll;
static constexpr Monoid m_id() { return 0; }
static constexpr OperatorMonoid o_id() { return -LINF; }
static Monoid m_merge(const Monoid& a, const Monoid& b) { return a ^ b; }
static OperatorMonoid o_merge(const OperatorMonoid& a, const OperatorMonoid& b) { return b == o_id() ? a : b; }
static Monoid apply(const Monoid& a, const OperatorMonoid& b) { return b == o_id() ? a : b; }
};
int n; cin >> n;
vector<vector<Edge<ll>>> graph(n);
REP(_, n - 1) {
int l, r; ll a; cin >> l >> r >> a; --l; --r;
graph[l].emplace_back(l, r, a);
graph[r].emplace_back(r, l, a);
}
HeavyLightDecomposition hld(graph, 0);
LazySegmentTree<RangeXorAndUpdateQuery> seg(hld.cost);
int q; cin >> q;
while (q--) {
int t, x; cin >> t >> x; --x;
if (t == 1) {
hld.subtree_e_update(x, [&](int l, int r) -> void { return seg.apply(l, r, 0); });
hld.e_update(hld.parent[x], x, [&](int l, int r) -> void { return seg.apply(l, r, 0); });
} else if (t == 2) {
cout << hld.subtree_e_query<ll>(x, [&](int l, int r) -> ll { return seg.get(l, r); }) << '\n';
}
}
return 0;
}
emthrm