結果

問題 No.1790 Subtree Deletion
ユーザー koba-e964koba-e964
提出日時 2021-12-19 18:16:46
言語 Rust
(1.72.1)
結果
AC  
実行時間 305 ms / 3,000 ms
コード長 8,749 bytes
コンパイル時間 7,606 ms
コンパイル使用メモリ 166,992 KB
実行使用メモリ 30,868 KB
最終ジャッジ日時 2023-10-13 18:56:52
合計ジャッジ時間 5,934 ms
ジャッジサーバーID
(参考情報)
judge12 / judge14
このコードへのチャレンジ(β)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
4,348 KB
testcase_01 AC 1 ms
4,348 KB
testcase_02 AC 1 ms
4,348 KB
testcase_03 AC 305 ms
30,724 KB
testcase_04 AC 299 ms
30,644 KB
testcase_05 AC 303 ms
30,520 KB
testcase_06 AC 304 ms
30,812 KB
testcase_07 AC 303 ms
30,868 KB
testcase_08 AC 21 ms
4,348 KB
testcase_09 AC 272 ms
30,600 KB
testcase_10 AC 297 ms
30,628 KB
testcase_11 AC 298 ms
30,596 KB
testcase_12 AC 217 ms
27,952 KB
testcase_13 AC 215 ms
24,868 KB
testcase_14 AC 66 ms
7,840 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

use std::io::{Write, BufWriter};
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
    ($($r:tt)*) => {
        let stdin = std::io::stdin();
        let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
        let mut next = move || -> String{
            bytes.by_ref().map(|r|r.unwrap() as char)
                .skip_while(|c|c.is_whitespace())
                .take_while(|c|!c.is_whitespace())
                .collect()
        };
        input_inner!{next, $($r)*}
    };
}

macro_rules! input_inner {
    ($next:expr) => {};
    ($next:expr,) => {};
    ($next:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($next, $t);
        input_inner!{$next $($r)*}
    };
}

macro_rules! read_value {
    ($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };
    ($next:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
    };
    ($next:expr, usize1) => (read_value!($next, usize) - 1);
    ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}

// Lazy Segment Tree. This data structure is useful for fast folding and updating on intervals of an array
// whose elements are elements of monoid T. Note that constructing this tree requires the identity
// element of T and the operation of T. This is monomorphised, because of efficiency. T := i64, biop = max, upop = (+)
// Reference: https://github.com/atcoder/ac-library/blob/master/atcoder/lazysegtree.hpp
// Verified by: https://judge.yosupo.jp/submission/68794
//              https://atcoder.jp/contests/joisc2021/submissions/27734236
pub trait ActionRing {
    type T: Clone + Copy; // data
    type U: Clone + Copy + PartialEq + Eq; // action
    fn biop(x: Self::T, y: Self::T) -> Self::T;
    fn update(x: Self::T, a: Self::U) -> Self::T;
    fn upop(fst: Self::U, snd: Self::U) -> Self::U;
    fn e() -> Self::T;
    fn upe() -> Self::U; // identity for upop
}
pub struct LazySegTree<R: ActionRing> {
    n: usize,
    dep: usize,
    dat: Vec<R::T>,
    lazy: Vec<R::U>,
}
impl<R: ActionRing> LazySegTree<R> {
    pub fn new(n_: usize) -> Self {
        let mut n = 1;
        let mut dep = 0;
        while n < n_ { n *= 2; dep += 1; } // n is a power of 2
        LazySegTree {
            n: n,
            dep: dep,
            dat: vec![R::e(); 2 * n],
            lazy: vec![R::upe(); n],
        }
    }
    #[allow(unused)]
    pub fn with(a: &[R::T]) -> Self {
        let mut ret = Self::new(a.len());
        let n = ret.n;
        for i in 0..a.len() {
            ret.dat[n + i] = a[i];
        }
        for i in (1..n).rev() {
            ret.update_node(i);
        }
        ret
    }
    #[inline]
    pub fn set(&mut self, idx: usize, x: R::T) {
        debug_assert!(idx < self.n);
        self.apply_any(idx, |_t| x);
    }
    #[inline]
    pub fn apply(&mut self, idx: usize, f: R::U) {
        debug_assert!(idx < self.n);
        self.apply_any(idx, |t| R::update(t, f));
    }
    pub fn apply_any<F: Fn(R::T) -> R::T>(&mut self, idx: usize, f: F) {
        debug_assert!(idx < self.n);
        let idx = idx + self.n;
        for i in (1..self.dep + 1).rev() {
            self.push(idx >> i);
        }
        self.dat[idx] = f(self.dat[idx]);
        for i in 1..self.dep + 1 {
            self.update_node(idx >> i);
        }
    }
    pub fn get(&mut self, idx: usize) -> R::T {
        debug_assert!(idx < self.n);
        let idx = idx + self.n;
        for i in (1..self.dep + 1).rev() {
            self.push(idx >> i);
        }
        self.dat[idx]
    }
    /* [l, r) (note: half-inclusive) */
    #[inline]
    pub fn query(&mut self, l: usize, r: usize) -> R::T {
        debug_assert!(l <= r && r <= self.n);
        if l == r { return R::e(); }
        let mut l = l + self.n;
        let mut r = r + self.n;
        for i in (1..self.dep + 1).rev() {
            if ((l >> i) << i) != l { self.push(l >> i); }
            if ((r >> i) << i) != r { self.push((r - 1) >> i); }
        }
        let mut sml = R::e();
        let mut smr = R::e();
        while l < r {
            if (l & 1) != 0 {
                sml = R::biop(sml, self.dat[l]);
                l += 1;
            }
            if (r & 1) != 0 {
                r -= 1;
                smr = R::biop(self.dat[r], smr);
            }
            l >>= 1;
            r >>= 1;
        }
        R::biop(sml, smr)
    }
    /* ary[i] = upop(ary[i], v) for i in [l, r) (half-inclusive) */
    #[inline]
    pub fn update(&mut self, l: usize, r: usize, f: R::U)  {
        debug_assert!(l <= r && r <= self.n);
        if l == r { return; }
        let mut l = l + self.n;
        let mut r = r + self.n;
        for i in (1..self.dep + 1).rev() {
            if ((l >> i) << i) != l { self.push(l >> i); }
            if ((r >> i) << i) != r { self.push((r - 1) >> i); }
        }
        {
            let l2 = l;
            let r2 = r;
            while l < r {
                if (l & 1) != 0 {
                    self.all_apply(l, f);
                    l += 1;
                }
                if (r & 1) != 0 {
                    r -= 1;
                    self.all_apply(r, f);
                }
                l >>= 1;
                r >>= 1;
            }
            l = l2;
            r = r2;
        }
        for i in 1..self.dep + 1 {
            if ((l >> i) << i) != l { self.update_node(l >> i); }
            if ((r >> i) << i) != r { self.update_node((r - 1) >> i); }
        }
    }
    #[inline]
    fn update_node(&mut self, k: usize) {
        self.dat[k] = R::biop(self.dat[2 * k], self.dat[2 * k + 1]);
    }
    fn all_apply(&mut self, k: usize, f: R::U) {
        self.dat[k] = R::update(self.dat[k], f);
        if k < self.n {
            self.lazy[k] = R::upop(self.lazy[k], f);
        }
    }
    fn push(&mut self, k: usize) {
        let val = self.lazy[k];
        self.all_apply(2 * k, val);
        self.all_apply(2 * k + 1, val);
        self.lazy[k] = R::upe();
    }
}

enum AffineXor {}

type AffineInt = i64; // Change here to change type
impl ActionRing for AffineXor {
    type T = (AffineInt, AffineInt); // data, size
    type U = (AffineInt, AffineInt); // action, (a, b) |-> x |-> ax + b
    fn biop((x, s): Self::T, (y, t): Self::T) -> Self::T {
        (x ^ y, s + t)
    }
    fn update((x, s): Self::T, (a, b): Self::U) -> Self::T {
        (if s == 1 { b } else { 0 } ^ if a % 2 != 0 { x } else { 0 }, s)
    }
    fn upop(fst: Self::U, snd: Self::U) -> Self::U {
        let (a, b) = fst;
        let (c, d) = snd;
        (a * c, if c % 2 != 0 { b } else { 0 } ^ d)
    }
    fn e() -> Self::T {
        (0.into(), 0.into())
    }
    fn upe() -> Self::U { // identity for upop
        (1.into(), 0.into())
    }
}

// This function uses O(|g|) stack space.
fn euler_tour(v: usize, par: usize, g: &[Vec<usize>],
              rng: &mut [(usize, usize)], cnt: &mut usize) {
    let me = *cnt;
    *cnt += 1;
    for &w in &g[v] {
        if w == par {
            continue;
        }
        euler_tour(w, v, g, rng, cnt);
    }
    rng[v] = (me, *cnt);
}

fn main() {
    // In order to avoid potential stack overflow, spawn a new thread.
    let stack_size = 104_857_600; // 100 MB
    let thd = std::thread::Builder::new().stack_size(stack_size);
    thd.spawn(|| solve()).unwrap().join().unwrap();
}

fn dfs(v: usize, par: usize, g: &[Vec<(usize, i64)>], rng: &[(usize, usize)], val: &mut [i64], p: &mut [usize]) {
    p[v] = par;
    for &(w, c) in &g[v] {
        if w == par {
            continue;
        }
        val[w] = c;
        dfs(w, v, g, rng, val, p);
    }
}

fn solve() {
    let out = std::io::stdout();
    let mut out = BufWriter::new(out.lock());
    macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););}
    input! {
        n: usize,
        lra: [(usize1, usize1, i64); n - 1],
        q: usize,
        tx: [(i32, usize1); q],
    }
    let mut g = vec![vec![]; n];
    let mut g_uw = vec![vec![]; n];
    for &(l, r, a) in &lra {
        g_uw[l].push(r);
        g_uw[r].push(l);
        g[l].push((r, a));
        g[r].push((l, a));
    }
    let mut cnt = 0;
    let mut rng = vec![(0, 0); n];
    euler_tour(0, n, &g_uw, &mut rng, &mut cnt);
    let mut val = vec![0; n];
    let mut p = vec![0; n];
    dfs(0, n, &g, &rng, &mut val, &mut p);
    let mut st = LazySegTree::<AffineXor>::new(n);
    for i in 0..n {
        st.set(rng[i].0, (val[i], 1));
    }
    for (t, x) in tx {
        if t == 1 {
            let (l, r) = rng[x];
            st.update(l, r, (0, 0));
        } else {
            let (l, r) = rng[x];
            puts!("{}\n", st.query(l, r).0 ^ st.get(l).0);
        }
    }
}
0