結果
| 問題 |
No.2162 Copy and Paste 2
|
| コンテスト | |
| ユーザー |
akakimidori
|
| 提出日時 | 2021-12-22 12:12:53 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 1,321 ms / 7,000 ms |
| コード長 | 2,130 bytes |
| コンパイル時間 | 1,584 ms |
| コンパイル使用メモリ | 82,272 KB |
| 実行使用メモリ | 104,124 KB |
| 最終ジャッジ日時 | 2024-11-06 21:10:52 |
| 合計ジャッジ時間 | 21,107 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 26 |
ソースコード
# https://yukicoder.me/submissions/692361
# これをベースに書き換え
# ACL-for-python by shakayami
# https://github.com/shakayami/ACL-for-python
class string:
def z_algorithm(s):
n = len(s)
if n == 0:
return []
z = [0]*n
i = 1
j = 0
while(i < n):
z[i] = 0 if (j+z[j] <= i) else min(j+z[j]-i, z[i-j])
while((i+z[i] < n) and (s[z[i]] == s[i+z[i]])):
z[i] += 1
if (j+z[j] < i+z[i]):
j = i
i += 1
z[0] = n
return z
class fenwick_tree():
n = 1
data = [0 for i in range(n)]
def __init__(self, N):
self.n = N
self.data = [0 for i in range(N)]
def add(self, p, x):
assert 0 <= p < self.n, "0<=p<n,p={0},n={1}".format(p, self.n)
p += 1
while(p <= self.n):
self.data[p-1] += x
p += p & -p
def sum(self, l, r):
assert (0 <= l and l <= r and r <=
self.n), "0<=l<=r<=n,l={0},r={1},n={2}".format(l, r, self.n)
return self.sum0(r)-self.sum0(l)
def sum0(self, r):
s = 0
while(r > 0):
s += self.data[r-1]
r -= r & -r
return s
def lower_bound(self, w):
if w < 0:
return -1
k = 1
while k < self.n:
k <<= 1
x = 0
ww = w
while k > 0:
if x + k - 1 < self.n and self.data[x + k - 1] < ww:
ww -= self.data[x + k - 1]
x += k
k >>= 1
return x
s = input()
n = len(s)
z = string.z_algorithm(s)
invz = [[] for i in range(n + 1)]
fw = fenwick_tree(n + 1)
for i in range(n):
if z[i] >= 2:
invz[z[i]].append(i)
fw.add(i, 1)
fw.add(n, 1)
dp = [0 for i in range(n + 1)]
for j in range(2, n):
d = dp[j]
dp[j + 1] = max(dp[j + 1], d)
d += -1 + j - 1
pos = fw.lower_bound(fw.sum0(j) + 1) + j
while pos <= n:
dp[pos] = max(dp[pos], d)
d += j - 1
pos = fw.lower_bound(fw.sum0(pos) + 1) + j
for ii in invz[j]:
fw.add(ii, -1)
ans = n - dp[n]
print(ans)
akakimidori