結果
問題 | No.1796 木上のクーロン |
ユーザー | Pachicobue |
提出日時 | 2021-12-25 16:38:14 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 44,286 bytes |
コンパイル時間 | 4,485 ms |
コンパイル使用メモリ | 270,720 KB |
実行使用メモリ | 344,708 KB |
最終ジャッジ日時 | 2024-09-21 19:20:04 |
合計ジャッジ時間 | 32,352 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,812 KB |
testcase_03 | AC | 2 ms
6,812 KB |
testcase_04 | AC | 2 ms
6,820 KB |
testcase_05 | AC | 1 ms
6,816 KB |
testcase_06 | AC | 2 ms
6,812 KB |
testcase_07 | AC | 2 ms
6,816 KB |
testcase_08 | AC | 3 ms
6,816 KB |
testcase_09 | AC | 3 ms
6,816 KB |
testcase_10 | AC | 3 ms
6,940 KB |
testcase_11 | AC | 3 ms
6,944 KB |
testcase_12 | AC | 3 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,944 KB |
testcase_14 | AC | 3 ms
6,944 KB |
testcase_15 | AC | 4 ms
6,940 KB |
testcase_16 | AC | 4 ms
6,940 KB |
testcase_17 | AC | 2 ms
6,940 KB |
testcase_18 | AC | 3 ms
6,944 KB |
testcase_19 | AC | 3 ms
6,940 KB |
testcase_20 | AC | 214 ms
14,932 KB |
testcase_21 | AC | 211 ms
14,932 KB |
testcase_22 | AC | 454 ms
26,440 KB |
testcase_23 | AC | 448 ms
26,560 KB |
testcase_24 | AC | 756 ms
38,392 KB |
testcase_25 | AC | 772 ms
38,372 KB |
testcase_26 | AC | 1,070 ms
49,900 KB |
testcase_27 | AC | 1,066 ms
49,592 KB |
testcase_28 | AC | 3,232 ms
77,920 KB |
testcase_29 | AC | 3,276 ms
76,256 KB |
testcase_30 | AC | 415 ms
79,016 KB |
testcase_31 | AC | 755 ms
79,836 KB |
testcase_32 | AC | 1,147 ms
49,452 KB |
testcase_33 | TLE | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
ソースコード
#include <bits/stdc++.h> #pragma region Header using i32 = int; using u32 = unsigned int; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; using f64 = double; using f80 = long double; using f128 = __float128; constexpr i32 operator"" _i32(u64 v) { return v; } constexpr i32 operator"" _u32(u64 v) { return v; } constexpr i64 operator"" _i64(u64 v) { return v; } constexpr u64 operator"" _u64(u64 v) { return v; } constexpr f64 operator"" _f64(f80 v) { return v; } constexpr f80 operator"" _f80(f80 v) { return v; } using Istream = std::istream; using Ostream = std::ostream; using Str = std::string; template<typename T> using Lt = std::less<T>; template<typename T> using Gt = std::greater<T>; template<typename T> using IList = std::initializer_list<T>; template<int n> using BSet = std::bitset<n>; template<typename T1, typename T2> using Pair = std::pair<T1, T2>; template<typename... Ts> using Tup = std::tuple<Ts...>; template<typename T, int N> using Arr = std::array<T, N>; template<typename... Ts> using Deq = std::deque<Ts...>; template<typename... Ts> using Set = std::set<Ts...>; template<typename... Ts> using MSet = std::multiset<Ts...>; template<typename... Ts> using USet = std::unordered_set<Ts...>; template<typename... Ts> using UMSet = std::unordered_multiset<Ts...>; template<typename... Ts> using Map = std::map<Ts...>; template<typename... Ts> using MMap = std::multimap<Ts...>; template<typename... Ts> using UMap = std::unordered_map<Ts...>; template<typename... Ts> using UMMap = std::unordered_multimap<Ts...>; template<typename... Ts> using Vec = std::vector<Ts...>; template<typename... Ts> using Stack = std::stack<Ts...>; template<typename... Ts> using Queue = std::queue<Ts...>; template<typename T> using MaxHeap = std::priority_queue<T>; template<typename T> using MinHeap = std::priority_queue<T, Vec<T>, Gt<T>>; using NSec = std::chrono::nanoseconds; using USec = std::chrono::microseconds; using MSec = std::chrono::milliseconds; using Sec = std::chrono::seconds; template<typename T> constexpr T LIMMIN = std::numeric_limits<T>::min(); template<typename T> constexpr T LIMMAX = std::numeric_limits<T>::max(); template<typename T> constexpr T INF = (LIMMAX<T> - 1) / 2; template<typename T> constexpr T PI = T{3.141592653589793238462643383279502884}; template<typename T = u64> constexpr T TEN(const int n) { return n == 0 ? T{1} : TEN<T>(n - 1) * T{10}; } Ostream& operator<<(Ostream& os, i128 v) { bool minus = false; if (v < 0) { minus = true, v = -v; } Str ans; if (v == 0) { ans = "0"; } while (v) { ans.push_back('0' + v % 10), v /= 10; } std::reverse(ans.begin(), ans.end()); return os << (minus ? "-" : "") << ans; } Ostream& operator<<(Ostream& os, u128 v) { Str ans; if (v == 0) { ans = "0"; } while (v) { ans.push_back('0' + v % 10), v /= 10; } std::reverse(ans.begin(), ans.end()); return os << ans; } template<typename T> bool chmin(T& a, const T& b) { if (a > b) { a = b; return true; } else { return false; } } template<typename T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return true; } else { return false; } } template<typename T> constexpr T floorDiv(T x, T y) { if (y < T{}) { x = -x, y = -y; } return x >= T{} ? x / y : (x - y + 1) / y; } template<typename T> constexpr T ceilDiv(T x, T y) { if (y < T{}) { x = -x, y = -y; } return x >= T{} ? (x + y - 1) / y : x / y; } template<typename T, typename I> constexpr T modPower(T v, I n, T mod) { T ans = 1 % mod; for (; n > 0; n >>= 1, (v *= v) %= mod) { if (n % 2 == 1) { (ans *= v) %= mod; } } return ans; } template<typename T, typename I> constexpr T power(T v, I n) { T ans = 1; for (; n > 0; n >>= 1, v *= v) { if (n % 2 == 1) { ans *= v; } } return ans; } template<typename T, typename I> constexpr T power(T v, I n, const T& e) { T ans = e; for (; n > 0; n >>= 1, v *= v) { if (n % 2 == 1) { ans *= v; } } return ans; } template<typename T> Vec<T> operator+=(Vec<T>& vs1, const Vec<T>& vs2) { vs1.insert(vs1.end(), vs2.begin(), vs2.end()); return vs1; } template<typename T> Vec<T> operator+(const Vec<T>& vs1, const Vec<T>& vs2) { auto vs = vs1; vs += vs2; return vs; } template<typename Vs, typename V> void fillAll(Vs& arr, const V& v) { if constexpr (std::is_convertible<V, Vs>::value) { arr = v; } else { for (auto& subarr : arr) { fillAll(subarr, v); } } } template<typename Vs> void sortAll(Vs& vs) { std::sort(std::begin(vs), std::end(vs)); } template<typename Vs, typename C> void sortAll(Vs& vs, C comp) { std::sort(std::begin(vs), std::end(vs), comp); } template<typename Vs> void reverseAll(Vs& vs) { std::reverse(std::begin(vs), std::end(vs)); } template<typename V, typename Vs> V sumAll(const Vs& vs) { if constexpr (std::is_convertible<Vs, V>::value) { return static_cast<V>(vs); } else { V ans = 0; for (const auto& v : vs) { ans += sumAll<V>(v); } return ans; } } template<typename Vs> int minInd(const Vs& vs) { return std::min_element(std::begin(vs), std::end(vs)) - std::begin(vs); } template<typename Vs> int maxInd(const Vs& vs) { return std::max_element(std::begin(vs), std::end(vs)) - std::begin(vs); } template<typename Vs, typename V> int lbInd(const Vs& vs, const V& v) { return std::lower_bound(std::begin(vs), std::end(vs), v) - std::begin(vs); } template<typename Vs, typename V> int ubInd(const Vs& vs, const V& v) { return std::upper_bound(std::begin(vs), std::end(vs), v) - std::begin(vs); } template<typename T, typename F> Vec<T> genVec(int n, F gen) { Vec<T> ans; std::generate_n(std::back_insert_iterator(ans), n, gen); return ans; } Vec<int> iotaVec(int n, int offset = 0) { Vec<int> ans(n); std::iota(ans.begin(), ans.end(), offset); return ans; } constexpr int popcount(const u64 v) { return v ? __builtin_popcountll(v) : 0; } constexpr int log2p1(const u64 v) { return v ? 64 - __builtin_clzll(v) : 0; } constexpr int lsbp1(const u64 v) { return __builtin_ffsll(v); } constexpr int clog(const u64 v) { return v ? log2p1(v - 1) : 0; } constexpr u64 ceil2(const u64 v) { const int l = clog(v); return (l == 64) ? 0_u64 : (1_u64 << l); } constexpr u64 floor2(const u64 v) { return v ? (1_u64 << (log2p1(v) - 1)) : 0_u64; } constexpr bool ispow2(const u64 v) { return (v > 0) and ((v & (v - 1)) == 0); } constexpr bool btest(const u64 mask, const int ind) { return (mask >> ind) & 1_u64; } template<typename F> struct Fix : F { Fix(F&& f) : F{std::forward<F>(f)} {} template<typename... Args> auto operator()(Args&&... args) const { return F::operator()(*this, std::forward<Args>(args)...); } }; class irange { private: struct itr { itr(i64 start = 0, i64 step = 1) : m_cnt{start}, m_step{step} {} bool operator!=(const itr& it) const { return m_cnt != it.m_cnt; } int operator*() { return m_cnt; } itr& operator++() { m_cnt += m_step; return *this; } i64 m_cnt, m_step; }; i64 m_start, m_end, m_step; public: irange(i64 start, i64 end, i64 step = 1) { assert(step != 0); const i64 d = std::abs(step); const i64 l = (step > 0 ? start : end); const i64 r = (step > 0 ? end : start); int n = (r - l) / d + ((r - l) % d ? 1 : 0); if (l >= r) { n = 0; } m_start = start; m_end = start + step * n; m_step = step; } itr begin() const { return itr{m_start, m_step}; } itr end() const { return itr{m_end, m_step}; } }; irange rep(int end) { return irange(0, end, 1); } irange per(int rend) { return irange(rend - 1, -1, -1); } #pragma COMMENT("[REFS] Xoshiro: https://prng.di.unimi.it") namespace xoshiro_impl { u64 x; u64 next() { uint64_t z = (x += 0x9e3779b97f4a7c15); z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9; z = (z ^ (z >> 27)) * 0x94d049bb133111eb; return z ^ (z >> 31); } } // namespace xoshiro_impl class Xoshiro32 { public: using result_type = u32; using T = result_type; Xoshiro32(T seed = 0) { xoshiro_impl::x = seed; s[0] = xoshiro_impl::next(); s[1] = xoshiro_impl::next(); s[2] = xoshiro_impl::next(); s[3] = xoshiro_impl::next(); } static constexpr T min() { return LIMMIN<T>; } static constexpr T max() { return LIMMAX<T>; } T operator()() { return next(); } private: static constexpr T rotl(const T x, int k) { return (x << k) | (x >> (32 - k)); } T next() { const T ans = rotl(s[1] * 5, 7) * 9; const T t = s[1] << 9; s[2] ^= s[0]; s[3] ^= s[1]; s[1] ^= s[2]; s[0] ^= s[3]; s[2] ^= t; s[3] = rotl(s[3], 11); return ans; } T s[4]; }; class Xoshiro64 { public: using result_type = u64; using T = result_type; Xoshiro64(T seed = 0) { xoshiro_impl::x = seed; s[0] = xoshiro_impl::next(); s[1] = xoshiro_impl::next(); s[2] = xoshiro_impl::next(); s[3] = xoshiro_impl::next(); } static constexpr T min() { return LIMMIN<T>; } static constexpr T max() { return LIMMAX<T>; } T operator()() { return next(); } private: static constexpr T rotl(const T x, int k) { return (x << k) | (x >> (64 - k)); } T next() { const T ans = rotl(s[1] * 5, 7) * 9; const T t = s[1] << 17; s[2] ^= s[0]; s[3] ^= s[1]; s[1] ^= s[2]; s[0] ^= s[3]; s[2] ^= t; s[3] = rotl(s[3], 45); return ans; } T s[4]; }; template<typename Rng> class RNG { public: using result_type = typename Rng::result_type; using T = result_type; static constexpr T min() { return Rng::min(); } static constexpr T max() { return Rng::max(); } RNG() : RNG(std::random_device{}()) {} RNG(T seed) : m_rng(seed) {} T operator()() { return m_rng(); } template<typename T> T val(T min, T max) { return std::uniform_int_distribution<T>(min, max)(m_rng); } template<typename T> Pair<T, T> pair(T min, T max) { return std::minmax({val<T>(min, max), val<T>(min, max)}); } template<typename T> Vec<T> vec(int n, T min, T max) { return genVec<T>(n, [&]() { return val<T>(min, max); }); } template<typename T> Vec<Vec<T>> vvec(int n, int m, T min, T max) { return genVec<Vec<T>>(n, [&]() { return vec(m, min, max); }); } private: Rng m_rng; }; RNG<std::mt19937> rng; RNG<std::mt19937_64> rng64; RNG<Xoshiro32> rng_xo; RNG<Xoshiro64> rng_xo64; class Scanner { public: Scanner(Istream& is = std::cin) : m_is{is} { m_is.tie(nullptr)->sync_with_stdio(false); } template<typename T> T val() { T v; return m_is >> v, v; } template<typename T> T val(T offset) { return val<T>() - offset; } template<typename T> Vec<T> vec(int n) { return genVec<T>(n, [&]() { return val<T>(); }); } template<typename T> Vec<T> vec(int n, T offset) { return genVec<T>(n, [&]() { return val<T>(offset); }); } template<typename T> Vec<Vec<T>> vvec(int n, int m) { return genVec<Vec<T>>(n, [&]() { return vec<T>(m); }); } template<typename T> Vec<Vec<T>> vvec(int n, int m, const T offset) { return genVec<Vec<T>>(n, [&]() { return vec<T>(m, offset); }); } template<typename... Args> auto tup() { return Tup<Args...>{val<Args>()...}; } template<typename... Args> auto tup(const Args&... offsets) { return Tup<Args...>{val<Args>(offsets)...}; } private: Istream& m_is; }; Scanner in; class Printer { public: Printer(Ostream& os = std::cout) : m_os{os} { m_os << std::fixed << std::setprecision(15); } template<typename... Args> int operator()(const Args&... args) { dump(args...); return 0; } template<typename... Args> int ln(const Args&... args) { dump(args...), m_os << '\n'; return 0; } template<typename... Args> int el(const Args&... args) { dump(args...), m_os << std::endl; return 0; } private: template<typename T> void dump(const T& v) { m_os << v; } template<typename T> void dump(const Vec<T>& vs) { for (const int i : rep(vs.size())) { m_os << (i ? " " : ""), dump(vs[i]); } } template<typename T> void dump(const Vec<Vec<T>>& vss) { for (const int i : rep(vss.size())) { m_os << (i ? "\n" : ""), dump(vss[i]); } } template<typename T, typename... Ts> int dump(const T& v, const Ts&... args) { dump(v), m_os << ' ', dump(args...); return 0; } Ostream& m_os; }; Printer out; template<typename T, int n, int i = 0> auto ndVec(int const (&szs)[n], const T x = T{}) { if constexpr (i == n) { return x; } else { return std::vector(szs[i], ndVec<T, n, i + 1>(szs, x)); } } template<typename T, typename F> T binSearch(T ng, T ok, F check) { while (std::abs(ok - ng) > 1) { const T mid = (ok + ng) / 2; (check(mid) ? ok : ng) = mid; } return ok; } template<u32 mod_, u32 root_, u32 max2p_> class modint { template<typename U = u32&> static U modRef() { static u32 s_mod = 0; return s_mod; } template<typename U = u32&> static U rootRef() { static u32 s_root = 0; return s_root; } template<typename U = u32&> static U max2pRef() { static u32 s_max2p = 0; return s_max2p; } public: template<typename U = const u32> static constexpr std::enable_if_t<mod_ != 0, U> mod() { return mod_; } template<typename U = const u32> static std::enable_if_t<mod_ == 0, U> mod() { return modRef(); } template<typename U = const u32> static constexpr std::enable_if_t<mod_ != 0, U> root() { return root_; } template<typename U = const u32> static std::enable_if_t<mod_ == 0, U> root() { return rootRef(); } template<typename U = const u32> static constexpr std::enable_if_t<mod_ != 0, U> max2p() { return max2p_; } template<typename U = const u32> static std::enable_if_t<mod_ == 0, U> max2p() { return max2pRef(); } template<typename U = u32> static void setMod(std::enable_if_t<mod_ == 0, U> m) { modRef() = m; } template<typename U = u32> static void setRoot(std::enable_if_t<mod_ == 0, U> r) { rootRef() = r; } template<typename U = u32> static void setMax2p(std::enable_if_t<mod_ == 0, U> m) { max2pRef() = m; } constexpr modint() : m_val{0} {} constexpr modint(i64 v) : m_val{normll(v)} {} constexpr void setRaw(u32 v) { m_val = v; } constexpr modint operator-() const { return modint{0} - (*this); } constexpr modint& operator+=(const modint& m) { m_val = norm(m_val + m.val()); return *this; } constexpr modint& operator-=(const modint& m) { m_val = norm(m_val + mod() - m.val()); return *this; } constexpr modint& operator*=(const modint& m) { m_val = normll((i64)m_val * (i64)m.val() % (i64)mod()); return *this; } constexpr modint& operator/=(const modint& m) { return *this *= m.inv(); } constexpr modint operator+(const modint& m) const { auto v = *this; return v += m; } constexpr modint operator-(const modint& m) const { auto v = *this; return v -= m; } constexpr modint operator*(const modint& m) const { auto v = *this; return v *= m; } constexpr modint operator/(const modint& m) const { auto v = *this; return v /= m; } constexpr bool operator==(const modint& m) const { return m_val == m.val(); } constexpr bool operator!=(const modint& m) const { return not(*this == m); } friend Istream& operator>>(Istream& is, modint& m) { i64 v; return is >> v, m = v, is; } friend Ostream& operator<<(Ostream& os, const modint& m) { return os << m.val(); } constexpr u32 val() const { return m_val; } template<typename I> constexpr modint pow(I n) const { return power(*this, n); } constexpr modint inv() const { return pow(mod() - 2); } static modint sinv(u32 n) { static Vec<modint> is{1, 1}; for (u32 i = (u32)is.size(); i <= n; i++) { is.push_back(-is[mod() % i] * (mod() / i)); } return is[n]; } static modint fact(u32 n) { static Vec<modint> fs{1, 1}; for (u32 i = (u32)fs.size(); i <= n; i++) { fs.push_back(fs.back() * i); } return fs[n]; } static modint ifact(u32 n) { static Vec<modint> ifs{1, 1}; for (u32 i = (u32)ifs.size(); i <= n; i++) { ifs.push_back(ifs.back() * sinv(i)); } return ifs[n]; } static modint comb(int n, int k) { return k > n or k < 0 ? modint{0} : fact(n) * ifact(n - k) * ifact(k); } private: static constexpr u32 norm(u32 x) { return x < mod() ? x : x - mod(); } static constexpr u32 normll(i64 x) { return norm(u32(x % (i64)mod() + (i64)mod())); } u32 m_val; }; using modint_1000000007 = modint<1000000007, 5, 1>; using modint_998244353 = modint<998244353, 3, 23>; template<int id> using modint_dynamic = modint<0, 0, id>; template<typename T = int> class Graph { struct Edge { Edge() = default; Edge(int i, int t, T c) : id{i}, to{t}, cost{c} {} int id; int to; T cost; operator int() const { return to; } }; public: Graph(int n) : m_v{n}, m_edges(n) {} void addEdge(int u, int v, bool bi = false) { assert(0 <= u and u < m_v); assert(0 <= v and v < m_v); m_edges[u].emplace_back(m_e, v, 1); if (bi) { m_edges[v].emplace_back(m_e, u, 1); } m_e++; } void addEdge(int u, int v, const T& c, bool bi = false) { assert(0 <= u and u < m_v); assert(0 <= v and v < m_v); m_edges[u].emplace_back(m_e, v, c); if (bi) { m_edges[v].emplace_back(m_e, u, c); } m_e++; } const Vec<Edge>& operator[](const int u) const { assert(0 <= u and u < m_v); return m_edges[u]; } Vec<Edge>& operator[](const int u) { assert(0 <= u and u < m_v); return m_edges[u]; } int v() const { return m_v; } int e() const { return m_e; } friend Ostream& operator<<(Ostream& os, const Graph& g) { for (int u : rep(g.v())) { for (const auto& [id, v, c] : g[u]) { os << "[" << id << "]: "; os << u << "->" << v << "(" << c << ")\n"; } } return os; } Vec<T> sizes(int root = 0) const { const int N = v(); assert(0 <= root and root < N); Vec<T> ss(N, 1); Fix([&](auto dfs, int u, int p) -> void { for (const auto& [id, v, c] : m_edges[u]) { static_cast<void>(id); if (v == p) { continue; } dfs(v, u); ss[u] += ss[v]; } })(root, -1); return ss; } Vec<T> depths(int root = 0) const { const int N = v(); assert(0 <= root and root < N); Vec<T> ds(N, 0); Fix([&](auto dfs, int u, int p) -> void { for (const auto& [id, v, c] : m_edges[u]) { static_cast<void>(id); if (v == p) { continue; } ds[v] = ds[u] + c; dfs(v, u); } })(root, -1); return ds; } Vec<int> parents(int root = 0) const { const int N = v(); assert(0 <= root and root < N); Vec<int> ps(N, -1); Fix([&](auto dfs, int u, int p) -> void { for (const auto& [id, v, c] : m_edges[u]) { static_cast<void>(id); if (v == p) { continue; } ps[v] = u; dfs(v, u); } })(root, -1); return ps; } private: int m_v; int m_e = 0; Vec<Vec<Edge>> m_edges; }; template<typename T> class CentroidDecomp { public: CentroidDecomp(const Graph<T>& g) : m_cs(g.v()) { const int N = g.v(); Vec<int> szs(N, 1); Vec<bool> used(N, false); auto sizeDfs = Fix([&](auto dfs, int u, int p) -> int { szs[u] = 1; for (int v : g[u]) { if (v == p or used[v]) { continue; } szs[u] += dfs(v, u); } return szs[u]; }); auto getCentor = Fix([&](auto dfs, int u, int p, int tot) -> int { for (int v : g[u]) { if (v == p or used[v]) { continue; } if (szs[v] * 2 > tot) { return dfs(v, u, tot); } } if (tot == N) { m_center = u; } return u; }); Fix([&](auto dfs, int u, int pc) -> void { const int tot = sizeDfs(u, -1); const int c = getCentor(u, -1, tot); used[c] = true; if (pc != -1) { m_cs.addEdge(pc, c); } for (int v : g[c]) { if (not used[v]) { dfs(v, c); } } })(0, -1); } int center() const { return m_center; } const Graph<>& centers() const { return m_cs; } private: int m_center; Graph<> m_cs; }; template<typename SemiGroup> class DisjointSparseTable { using T = typename SemiGroup::T; public: DisjointSparseTable(const Vec<T>& vs) : m_size(vs.size()), m_depth(log2p1(m_size)), m_vss(m_depth, vs) { for (int d : rep(m_depth)) { const int w = 1 << (m_depth - d - 1); for (int i = 1; i * w < m_size; i += 2) { int l = i * w - 1, r = i * w; for (int j : irange(1, w)) { m_vss[d][l - j] = merge(vs[l - j], m_vss[d][l - j + 1]); if (r + j < m_size) { m_vss[d][r + j] = merge(vs[r + j], m_vss[d][r + j - 1]); } } } } } T fold(int l, int r) const { assert(0 <= l and l < r and r <= m_size); if (r - l == 1) { return m_vss.back()[l]; } const int d = m_depth - log2p1(l ^ (r - 1)); return merge(m_vss[d][l], m_vss[d][r - 1]); } private: int m_size, m_depth; Vec<Vec<T>> m_vss; static inline SemiGroup merge; }; template<typename TotalOrd> class StaticRMQ { using T = typename TotalOrd::T; public: StaticRMQ(const Vec<T>& vs) : m_size(vs.size()), m_bn(wind(m_size + bs - 1)), m_vals{vs}, m_bucket_vals([&]() { Vec<T> ans(m_bn); for (int i : rep(m_size)) { ans[wind(i)] = (i % bs == 0 ? m_vals[i] : std::min(ans[wind(i)], m_vals[i], comp)); } return ans; }()), m_masks(m_size, 0), m_st(m_bucket_vals) { for (int i : rep(m_bn)) { Vec<int> g(bs, m_size), stack; for (const int j : rep(bs)) { if (ind(i, j) >= m_size) { break; } for (; not stack.empty() and not comp(m_vals[stack.back()], m_vals[ind(i, j)]); stack.pop_back()) {} g[j] = stack.empty() ? m_size : stack.back(), stack.push_back(ind(i, j)); } for (int j : rep(bs)) { if (ind(i, j) >= m_size) { break; } m_masks[ind(i, j)] = g[j] == m_size ? static_cast<B>(0) : (m_masks[g[j]] | static_cast<B>(1) << (g[j] - i * bs)); } } } T fold(int l, int r) const { assert(0 <= l and l < r and r <= m_size); const int lb = (l + bs - 1) / bs, rb = r / bs; if (lb > rb) { return brmq(l, r); } else { return lb < rb ? (l < bs * lb ? (bs * rb < r ? std::min({m_st.fold(lb, rb), brmq(l, bs * lb), brmq(bs * rb, r)}, comp) : std::min(m_st.fold(lb, rb), brmq(l, bs * lb), comp)) : (bs * rb < r ? std::min( m_st.fold(lb, rb), brmq(bs * rb, r), comp) : m_st.fold(lb, rb))) : (l < bs * lb ? (bs * rb < r ? std::min( brmq(l, bs * lb), brmq(bs * rb, r), comp) : brmq(l, bs * lb)) : (bs * rb < r ? brmq(bs * rb, r) : T{})); } } private: using B = u64; static constexpr int bs = sizeof(B) * 8; static constexpr int bslog = log2p1(bs) - 1; static constexpr int wind(int n) { return n >> (bslog); } static constexpr int bind(int n) { return n ^ (wind(n) << bslog); } static constexpr int ind(int w, int b) { return (w << bslog) | b; } T brmq(int l, int r) const { const B w = m_masks[r - 1] >> (l % bs); return w == 0 ? m_vals[r - 1] : m_vals[l + lsbp1(w) - 1]; } struct SemiGroup { using T = typename TotalOrd::T; T operator()(const T& x1, const T& x2) const { return std::min(x1, x2, comp); } }; static inline TotalOrd comp; int m_size, m_bn; Vec<T> m_vals, m_bucket_vals; Vec<B> m_masks; DisjointSparseTable<SemiGroup> m_st; }; template<typename C> class LCA { using P = Pair<int, int>; public: LCA(const Graph<C>& g, int r = 0) : m_v(g.v()), m_ins(g.v(), 0), m_ds([&]() { Vec<P> ans; Vec<bool> used(g.v(), false); Fix([&](auto dfs, const P& s) -> void { const int u = s.second; used[u] = true; m_ins[u] = ans.size(); ans.push_back(s); for (int v : g[u]) { if (used[v]) { continue; } dfs(P{s.first + 1, v}); ans.push_back(s); } })(P{0, r}); return ans; }()), m_rmq(m_ds) {} int operator()(int u, int v) const { const auto [ul, vl] = std::minmax({m_ins[u], m_ins[v]}); return m_rmq.fold(ul, vl + 1).second; } private: struct Ord { using T = P; bool operator()(const T& p1, const T& p2) const { return p1 < p2; } }; int m_v; Vec<int> m_ins; Vec<P> m_ds; StaticRMQ<Ord> m_rmq; }; template<typename mint> class FPS : public Vec<mint> { public: using std::vector<mint>::vector; using std::vector<mint>::resize; FPS(const Vec<mint>& vs) : Vec<mint>{vs} {} int size() const { return Vec<mint>::size(); } int deg() const { return size() - 1; } FPS low(int n) const { return FPS{this->begin(), this->begin() + std::min(n, size())}; } FPS rev() const { FPS ans = *this; reverseAll(ans); return ans; } mint eval(const mint& x) const { mint ans = 0; mint power = 1; for (int i : rep(size())) { ans += power * (*this)[i]; power *= x; } return ans; } mint& operator[](const int n) { if (deg() < n) { resize(n + 1); } return Vec<mint>::operator[](n); } const mint& operator[](const int n) const { return Vec<mint>::operator[](n); } template<typename I> mint at(const I n) const { return (n < size() ? (*this)[n] : mint{0}); } FPS operator-() const { FPS ans = *this; for (auto& v : ans) { v = -v; } return ans; } FPS& operator+=(const FPS& f) { for (int i : rep(f.size())) { (*this)[i] += f[i]; } return *this; } FPS& operator-=(const FPS& f) { for (int i : rep(f.size())) { (*this)[i] -= f[i]; } return *this; } FPS& operator*=(const FPS& f) { return (*this) = (*this) * f; } FPS& operator<<=(const int s) { return *this = (*this << s); } FPS& operator>>=(const int s) { return *this = (*this >> s); } FPS operator+(const FPS& f) const { return FPS(*this) += f; } FPS operator-(const FPS& f) const { return FPS(*this) -= f; } FPS operator*(const FPS& f) const { return mult(f, size() + f.size() - 1); } FPS operator<<(const int s) const { FPS ans(size() + s); for (int i : rep(size())) { ans[i + s] = (*this)[i]; } return ans; } FPS operator>>(const int s) const { FPS ans; for (int i : irange(s, size())) { ans[i - s] = (*this)[i]; } return ans; } friend Ostream& operator<<(Ostream& os, const FPS& f) { return os << static_cast<Vec<mint>>(f); } FPS derivative() const { FPS ans; for (int i : irange(1, size())) { ans[i - 1] = (*this)[i] * i; } return ans; } FPS integral() const { FPS ans; for (int i : irange(1, size() + 1)) { ans[i] = (*this)[i - 1] * mint::sinv(i); } return ans; } FPS mult(const FPS& f, int sz) const { if (sz == 0) { return FPS{}; } const int N = std::min(size(), sz) + std::min(f.size(), sz) - 1; if (N < 10) { FPS ans; for (int i : rep(sz)) { for (int j : rep(sz)) { if (i + j >= sz) { break; } ans[i + j] += this->at(i) * f.at(j); } } return ans; } if (N <= (1 << mint::max2p())) { auto ans = conv<mint>(*this, f, sz); return ans; } else { const auto cs1 = conv<submint1>(*this, f, sz); const auto cs2 = conv<submint2>(*this, f, sz); const auto cs3 = conv<submint3>(*this, f, sz); FPS ans((int)cs1.size()); for (int i : rep(cs1.size())) { ans[i] = restore(cs1[i].val(), cs2[i].val(), cs3[i].val()); } return ans; } } FPS smult(int p, const mint a, int sz) // *(1+ax^p) (mod x^sz) { FPS ans = low(sz); for (int i = 0; i + p < sz; i++) { ans[i + p] += (*this)[i] * a; } return ans; } FPS sdiv(int p, const mint& a, int sz) // *(1+ax^p)^(-1) (mod x^sz) { FPS ans = low(sz); for (int i = 0; i + p < sz; i++) { ans[i + p] -= ans[i] * a; } return ans; } FPS inv(int sz) const { const int n = size(); assert((*this)[0].val() != 0); const int N = n * 2 - 1; if (N <= (1 << mint::max2p())) { FPS r{(*this)[0].inv()}; for (int lg = 0, m = 1; m < sz; m <<= 1, lg++) { FPS f{this->begin(), this->begin() + std::min(n, 2 * m)}; FPS g = r; f.resize(2 * m), g.resize(2 * m); trans(f, lg + 1, false), trans(g, lg + 1, false); for (int i : rep(2 * m)) { f[i] *= g[i]; } trans(f, lg + 1, true); std::fill(f.begin(), f.begin() + m, 0); trans(f, lg + 1, false); for (int i : rep(2 * m)) { f[i] *= g[i]; } trans(f, lg + 1, true); for (int i = m; i < std::min(2 * m, sz); i++) { r[i] = -f[i]; } } return r; } else { FPS g{(*this)[0].inv()}; for (int lg = 0, m = 1; m < sz; m <<= 1, lg++) { g = FPS{2} * g - this->mult(g.mult(g, 2 * m), 2 * m); } return g.low(sz); } } FPS log(const int sz) const { assert((*this)[0].val() == 1); auto ans = derivative().mult(inv(sz), sz).integral(); ans.resize(sz); return ans; } FPS exp(const int sz) const { const int l = lsb(sz); if (l == -1) { return FPS{1}.low(sz); } assert((*this)[0].val() == 0); const int n = size(); const int N = n * 2 - 1; if (N <= (1 << mint::max2p())) { FPS f = {1, (*this)[1]}, g{1}, G{1, 1}; for (int m = 2, lg = 1; m < sz; m <<= 1, lg++) { auto F = f; F.resize(2 * m), trans(F, lg + 1, false); FPS z(m); for (int i : rep(m)) { z[i] = F[i] * G[i]; } trans(z, lg, true); std::fill(z.begin(), z.begin() + m / 2, 0); trans(z, lg, false); for (int i : rep(m)) { z[i] *= G[i]; } trans(z, lg, true); for (int i : irange(m / 2, m)) { g[i] = -z[i]; } G = g, G.resize(m * 2), trans(G, lg + 1, false); auto q = low(m).derivative(); q.resize(m), trans(q, lg, false); for (int i : rep(m)) { q[i] *= F[i]; } trans(q, lg, true); const auto df = f.derivative(); for (int i : rep(m - 1)) { q[i] -= df[i]; } q.resize(m * 2); for (int i : rep(m - 1)) { q[m + i] = q[i], q[i] = 0; } trans(q, lg + 1, false); for (int i : rep(m * 2)) { q[i] *= G[i]; } trans(q, lg + 1, true); q.pop_back(); q = q.integral(); for (int i = m; i < std::min(size(), m * 2); i++) { q[i] += (*this)[i]; } std::fill(q.begin(), q.begin() + m, 0); trans(q, lg + 1, false); for (int i = 0; i < m * 2; i++) { q[i] *= F[i]; } trans(q, lg + 1, true); for (int i = m; i < 2 * m; i++) { f[i] = q[i]; } } return f.low(sz); } else { FPS f{1}; for (int m = 1; m < sz; m <<= 1) { auto g = low(2 * m); g[0] += 1; f.resize(2 * m); g -= f.log(2 * m); g = f.mult(g, 2 * m); for (int i = m; i < std::min(2 * m, g.size()); i++) { f[i] = g[i]; } } return f.low(sz); } } template<typename I> FPS pow(I n) const { return pow(n, deg() * n + 1); } template<typename I> FPS pow(I n, int sz) const { if (n == 0) { return FPS{1}.low(sz); } if (size() == 0) { return FPS{}; } const int p = lsb(deg() / n); if (p == -1) { return FPS{}; } const mint a = (*this)[p]; FPS f = (*this) >> p; for (auto& c : f) { c /= a; } f = f.log(sz - p * n); for (auto& c : f) { c *= n; } f = f.exp(sz - p * n); FPS g; for (int i : rep(f.size())) { g[i + p * n] = f[i] * a.pow(n); } return g; } FPS tshift(const mint& c) const { const int N = size(); FPS f(N), d(N); for (int i = 0; i < N; i++) { d[i] = c.pow(N - 1 - i) * mint::ifact(N - 1 - i); } for (int i = 0; i < N; i++) { f[i] = (*this)[i] * mint::fact(i); } f = f * d; FPS g(N); for (int i = 0; i < N; i++) { g[i] = f[i + N - 1] * mint::ifact(i); } return g; } FPS quot(const FPS& g) const { const int N = size(), M = g.size(); if (N < M) { return FPS{}; } const auto fR = rev(), gR = g.rev(); return fR.mult(gR.inv(N - M + 1), N - M + 1).rev(); } FPS rem(const FPS& g) const { return (*this) - g * quot(g); } private: int lsb() const { return lsb(deg()); } int lsb(int sz) const { for (int p : rep(sz + 1)) { if ((*this)[p].val() != 0) { return p; } } return -1; } using submint1 = modint<469762049, 3, 26>; using submint2 = modint<167772161, 3, 25>; using submint3 = modint<754974721, 11, 24>; template<typename submint> static void trans(Vec<submint>& as, int lg, bool rev) { const int N = 1 << lg; assert((int)as.size() == N); Vec<submint> rs, irs; if (rs.empty()) { const submint r = submint(submint::root()), ir = r.inv(); rs.resize(submint::max2p() + 1), irs.resize(submint::max2p() + 1); rs.back() = -r.pow((submint::mod() - 1) >> submint::max2p()), irs.back() = -ir.pow((submint::mod() - 1) >> submint::max2p()); for (u32 i : irange(submint::max2p(), 0, -1)) { rs[i - 1] = -(rs[i] * rs[i]); irs[i - 1] = -(irs[i] * irs[i]); } } const auto drange = (rev ? irange(0, lg, 1) : irange(lg - 1, -1, -1)); for (const int d : drange) { const int width = 1 << d; submint e = 1; for (int i = 0, j = 1; i < N; i += width * 2, j++) { for (int l = i, r = i + width; l < i + width; l++, r++) { if (rev) { const submint x = as[l], y = as[r]; as[l] = x + y, as[r] = (x - y) * e; } else { const submint x = as[l], y = as[r] * e; as[l] = x + y, as[r] = x - y; } } e *= (rev ? irs : rs)[lsbp1(j) + 1]; } } if (rev) { const submint iN = submint{N}.inv(); for (auto& a : as) { a *= iN; } } } template<typename submint> static Vec<submint> conv(const Vec<mint>& as, const Vec<mint>& bs, int sz) { const int an = std::min((int)as.size(), sz); const int bn = std::min((int)bs.size(), sz); const int M = an + bn - 1; const int lg = clog(M); const int L = 1 << lg; Vec<submint> As(L), Bs(L); for (int i : rep(an)) { As[i] = as[i].val(); } for (int i : rep(bn)) { Bs[i] = bs[i].val(); } trans(As, lg, false), trans(Bs, lg, false); for (int i : rep(L)) { As[i] *= Bs[i]; } trans(As, lg, true); const int N = std::min(sz, (int)as.size() + (int)bs.size() - 1); As.resize(N); return As; } static constexpr submint2 ip1 = submint2{submint1::mod()}.inv(); static constexpr submint3 ip2 = submint3{submint2::mod()}.inv(); static constexpr submint3 ip1p2 = submint3{submint1::mod()}.inv() * ip2; static constexpr mint p1() { return mint{submint1::mod()}; } static constexpr mint p1p2() { return p1() * mint{submint2::mod()}; } static constexpr mint restore(int x1, int x2, int x3) { const int k0 = x1; const int k1 = (ip1 * (x2 - k0)).val(); const int k2 = (ip1p2 * (x3 - k0) - ip2 * k1).val(); return p1p2() * k2 + p1() * k1 + k0; } }; #pragma endregion int main() { using mint = modint_998244353; const auto N = in.val<int>(); const auto Qs = in.vec<mint>(N); Graph g(N); for (int i : rep(N - 1)) { const auto [u, v] = in.tup<int, int>(1, 1); g.addEdge(u, v, true); } const auto lca = LCA(g); const auto ds = g.depths(); auto dist = [&](int u, int v) { return ds[u] + ds[v] - ds[lca(u, v)] * 2; }; const auto decomp = CentroidDecomp(g); const int C = decomp.center(); const auto cg = decomp.centers(); void(0); Vec<mint> ans(N, 0); Vec<bool> used(N, false); FPS<mint> Ss(N, mint::fact(N) * mint::fact(N)); for (int i : rep(N)) { Ss[i] /= mint(i + 1) * (i + 1); } Fix([&](auto dfs, int c) -> void { used[c] = true; Vec<int> nus; for (int nu : g[c]) { if (used[nu]) { continue; } nus.push_back(nu); } // qs[d] = cから見て深さdの頂点の電荷総和 FPS<mint> qs; // qss[i][d] = cから見て深さdの頂点(\in S_i)の電荷総和 Vec<FPS<mint>> qss(nus.size()); // uss[i] = S_iの頂点集合 Vec<Vec<int>> uss(nus.size()); for (int i : rep(nus.size())) { Fix([&](auto dfs, int i, int u, int p) -> void { const int l = dist(c, u); uss[i].push_back(u); qs[l] += Qs[u]; qss[i][l] += Qs[u]; for (int v : g[u]) { if (v == p or used[v]) { continue; } dfs(i, v, u); } })(i, nus[i], -1); } qs[0] += Qs[c]; qs = qs.rev(); for (auto& qs : qss) { qs = qs.rev(); } const int L = qs.size() - 1; FPS<mint> ss(std::min(2 * L + 1, N)); for (int i : rep(ss.size())) { ss[i] = Ss[i]; } const FPS<mint> rs = qs * ss; Vec<FPS<mint>> rss(nus.size()); for (int i : rep(nus.size())) { rss[i] = qss[i] * ss; } for (int i : rep(nus.size())) { for (int u : uss[i]) { const int l = dist(c, u); ans[u] += rs[qs.size() + l - 1]; ans[u] -= rss[i][qss[i].size() + l - 1]; } } ans[c] += rs[qs.size() - 1]; for (int nc : cg[c]) { dfs(nc); } })(C); for (int i : rep(N)) { out.ln(ans[i]); } return 0; }