結果
問題 | No.1796 木上のクーロン |
ユーザー | 👑 hos.lyric |
提出日時 | 2021-12-25 22:19:23 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,653 ms / 10,000 ms |
コード長 | 13,623 bytes |
コンパイル時間 | 1,955 ms |
コンパイル使用メモリ | 133,108 KB |
実行使用メモリ | 46,560 KB |
最終ジャッジ日時 | 2024-09-22 04:11:27 |
合計ジャッジ時間 | 17,627 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 7 ms
8,260 KB |
testcase_01 | AC | 8 ms
8,264 KB |
testcase_02 | AC | 8 ms
8,388 KB |
testcase_03 | AC | 7 ms
8,432 KB |
testcase_04 | AC | 9 ms
8,384 KB |
testcase_05 | AC | 9 ms
8,420 KB |
testcase_06 | AC | 8 ms
8,384 KB |
testcase_07 | AC | 8 ms
8,420 KB |
testcase_08 | AC | 9 ms
8,292 KB |
testcase_09 | AC | 8 ms
8,428 KB |
testcase_10 | AC | 8 ms
8,352 KB |
testcase_11 | AC | 9 ms
8,260 KB |
testcase_12 | AC | 8 ms
8,500 KB |
testcase_13 | AC | 9 ms
8,384 KB |
testcase_14 | AC | 9 ms
8,456 KB |
testcase_15 | AC | 10 ms
8,552 KB |
testcase_16 | AC | 10 ms
8,392 KB |
testcase_17 | AC | 9 ms
8,392 KB |
testcase_18 | AC | 8 ms
8,516 KB |
testcase_19 | AC | 9 ms
8,500 KB |
testcase_20 | AC | 109 ms
12,896 KB |
testcase_21 | AC | 105 ms
12,900 KB |
testcase_22 | AC | 231 ms
17,628 KB |
testcase_23 | AC | 229 ms
17,484 KB |
testcase_24 | AC | 375 ms
22,216 KB |
testcase_25 | AC | 377 ms
22,300 KB |
testcase_26 | AC | 559 ms
27,252 KB |
testcase_27 | AC | 565 ms
27,412 KB |
testcase_28 | AC | 1,653 ms
46,312 KB |
testcase_29 | AC | 1,632 ms
46,560 KB |
testcase_30 | AC | 280 ms
36,920 KB |
testcase_31 | AC | 310 ms
35,660 KB |
testcase_32 | AC | 636 ms
26,980 KB |
testcase_33 | AC | 931 ms
44,320 KB |
testcase_34 | AC | 875 ms
42,132 KB |
testcase_35 | AC | 1,056 ms
33,276 KB |
testcase_36 | AC | 1,046 ms
33,884 KB |
ソースコード
#include <cassert> #include <cmath> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <bitset> #include <complex> #include <deque> #include <functional> #include <iostream> #include <map> #include <numeric> #include <queue> #include <set> #include <sstream> #include <string> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using Int = long long; template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; }; template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; } template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; } template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; } //////////////////////////////////////////////////////////////////////////////// template <unsigned M_> struct ModInt { static constexpr unsigned M = M_; unsigned x; constexpr ModInt() : x(0U) {} constexpr ModInt(unsigned x_) : x(x_ % M) {} constexpr ModInt(unsigned long long x_) : x(x_ % M) {} constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {} constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {} ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; } ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; } ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; } ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); } ModInt pow(long long e) const { if (e < 0) return inv().pow(-e); ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b; } ModInt inv() const { unsigned a = M, b = x; int y = 0, z = 1; for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; } assert(a == 1U); return ModInt(y); } ModInt operator+() const { return *this; } ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; } ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); } ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); } ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); } ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); } template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); } template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); } template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); } template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); } explicit operator bool() const { return x; } bool operator==(const ModInt &a) const { return (x == a.x); } bool operator!=(const ModInt &a) const { return (x != a.x); } friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; } }; //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// constexpr unsigned MO = 998244353U; constexpr unsigned MO2 = 2U * MO; constexpr int FFT_MAX = 23; using Mint = ModInt<MO>; constexpr Mint FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 911660635U, 372528824U, 929031873U, 452798380U, 922799308U, 781712469U, 476477967U, 166035806U, 258648936U, 584193783U, 63912897U, 350007156U, 666702199U, 968855178U, 629671588U, 24514907U, 996173970U, 363395222U, 565042129U, 733596141U, 267099868U, 15311432U}; constexpr Mint INV_FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 86583718U, 509520358U, 337190230U, 87557064U, 609441965U, 135236158U, 304459705U, 685443576U, 381598368U, 335559352U, 129292727U, 358024708U, 814576206U, 708402881U, 283043518U, 3707709U, 121392023U, 704923114U, 950391366U, 428961804U, 382752275U, 469870224U}; constexpr Mint FFT_RATIOS[FFT_MAX] = {911660635U, 509520358U, 369330050U, 332049552U, 983190778U, 123842337U, 238493703U, 975955924U, 603855026U, 856644456U, 131300601U, 842657263U, 730768835U, 942482514U, 806263778U, 151565301U, 510815449U, 503497456U, 743006876U, 741047443U, 56250497U, 867605899U}; constexpr Mint INV_FFT_RATIOS[FFT_MAX] = {86583718U, 372528824U, 373294451U, 645684063U, 112220581U, 692852209U, 155456985U, 797128860U, 90816748U, 860285882U, 927414960U, 354738543U, 109331171U, 293255632U, 535113200U, 308540755U, 121186627U, 608385704U, 438932459U, 359477183U, 824071951U, 103369235U}; // as[rev(i)] <- \sum_j \zeta^(ij) as[j] void fft(Mint *as, int n) { assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX); int m = n; if (m >>= 1) { for (int i = 0; i < m; ++i) { const unsigned x = as[i + m].x; // < MO as[i + m].x = as[i].x + MO - x; // < 2 MO as[i].x += x; // < 2 MO } } if (m >>= 1) { Mint prod = 1U; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) { for (int i = i0; i < i0 + m; ++i) { const unsigned x = (prod * as[i + m]).x; // < MO as[i + m].x = as[i].x + MO - x; // < 3 MO as[i].x += x; // < 3 MO } prod *= FFT_RATIOS[__builtin_ctz(++h)]; } } for (; m; ) { if (m >>= 1) { Mint prod = 1U; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) { for (int i = i0; i < i0 + m; ++i) { const unsigned x = (prod * as[i + m]).x; // < MO as[i + m].x = as[i].x + MO - x; // < 4 MO as[i].x += x; // < 4 MO } prod *= FFT_RATIOS[__builtin_ctz(++h)]; } } if (m >>= 1) { Mint prod = 1U; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) { for (int i = i0; i < i0 + m; ++i) { const unsigned x = (prod * as[i + m]).x; // < MO as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; // < 2 MO as[i + m].x = as[i].x + MO - x; // < 3 MO as[i].x += x; // < 3 MO } prod *= FFT_RATIOS[__builtin_ctz(++h)]; } } } for (int i = 0; i < n; ++i) { as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; // < 2 MO as[i].x = (as[i].x >= MO) ? (as[i].x - MO) : as[i].x; // < MO } } // as[i] <- (1/n) \sum_j \zeta^(-ij) as[rev(j)] void invFft(Mint *as, int n) { assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX); int m = 1; if (m < n >> 1) { Mint prod = 1U; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) { for (int i = i0; i < i0 + m; ++i) { const unsigned long long y = as[i].x + MO - as[i + m].x; // < 2 MO as[i].x += as[i + m].x; // < 2 MO as[i + m].x = (prod.x * y) % MO; // < MO } prod *= INV_FFT_RATIOS[__builtin_ctz(++h)]; } m <<= 1; } for (; m < n >> 1; m <<= 1) { Mint prod = 1U; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) { for (int i = i0; i < i0 + (m >> 1); ++i) { const unsigned long long y = as[i].x + MO2 - as[i + m].x; // < 4 MO as[i].x += as[i + m].x; // < 4 MO as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; // < 2 MO as[i + m].x = (prod.x * y) % MO; // < MO } for (int i = i0 + (m >> 1); i < i0 + m; ++i) { const unsigned long long y = as[i].x + MO - as[i + m].x; // < 2 MO as[i].x += as[i + m].x; // < 2 MO as[i + m].x = (prod.x * y) % MO; // < MO } prod *= INV_FFT_RATIOS[__builtin_ctz(++h)]; } } if (m < n) { for (int i = 0; i < m; ++i) { const unsigned y = as[i].x + MO2 - as[i + m].x; // < 4 MO as[i].x += as[i + m].x; // < 4 MO as[i + m].x = y; // < 4 MO } } const Mint invN = Mint(n).inv(); for (int i = 0; i < n; ++i) { as[i] *= invN; } } void fft(vector<Mint> &as) { fft(as.data(), as.size()); } void invFft(vector<Mint> &as) { invFft(as.data(), as.size()); } vector<Mint> convolve(vector<Mint> as, vector<Mint> bs) { if (as.empty() || bs.empty()) return {}; const int len = as.size() + bs.size() - 1; int n = 1; for (; n < len; n <<= 1) {} as.resize(n); fft(as); bs.resize(n); fft(bs); for (int i = 0; i < n; ++i) as[i] *= bs[i]; invFft(as); as.resize(len); return as; } vector<Mint> square(vector<Mint> as) { if (as.empty()) return {}; const int len = as.size() + as.size() - 1; int n = 1; for (; n < len; n <<= 1) {} as.resize(n); fft(as); for (int i = 0; i < n; ++i) as[i] *= as[i]; invFft(as); as.resize(len); return as; } //////////////////////////////////////////////////////////////////////////////// constexpr int LIM = 400'010; Mint inv[LIM], fac[LIM], invFac[LIM]; void prepare() { inv[1] = 1; for (int i = 2; i < LIM; ++i) { inv[i] = -((Mint::M / i) * inv[Mint::M % i]); } fac[0] = invFac[0] = 1; for (int i = 1; i < LIM; ++i) { fac[i] = fac[i - 1] * i; invFac[i] = invFac[i - 1] * inv[i]; } } Mint binom(Int n, Int k) { if (n < 0) { if (k >= 0) { return ((k & 1) ? -1 : +1) * binom(-n + k - 1, k); } else if (n - k >= 0) { return (((n - k) & 1) ? -1 : +1) * binom(-k - 1, n - k); } else { return 0; } } else { if (0 <= k && k <= n) { assert(n < LIM); return fac[n] * invFac[k] * invFac[n - k]; } else { return 0; } } } /* [0, n] * [0, n - m + 1] [ a[0] ] [ ... a[0] ] [ a[m-1] ... ] [ a[m-1] ] [ ... ] [ a[0] ] [ ... ] [ a[m-1] ] [x^j] (rev(a) b) m - 1 <= j <= n - 1 */ vector<Mint> middle(vector<Mint> as, vector<Mint> bs) { const int m = as.size(); const int n = bs.size(); assert(m <= n); int nn = 1; for (; nn < n; nn <<= 1) {} reverse(as.begin(), as.end()); as.resize(nn, 0); fft(as); bs.resize(nn, 0); fft(bs); for (int i = 0; i < nn; ++i) { bs[i] *= as[i]; } invFft(bs); bs.resize(n); bs.erase(bs.begin(), bs.begin() + (m - 1)); return bs; } int N; vector<Mint> Q; vector<int> A, B; vector<vector<int>> G; vector<int> sz, del; void dfsSz(int u, int p) { sz[u] = 1; for (const int i : G[u]) { const int v = A[i] ^ B[i] ^ u; if (v != p) { dfsSz(v, u); sz[u] += sz[v]; } } } string dfsDebug(int u, int p) { ostringstream oss; oss << "[" << u; for (const int i : G[u]) { const int v = A[i] ^ B[i] ^ u; if (!del[v] && v != p) { oss << " " << dfsDebug(v, u); } } oss << "]"; return oss.str(); } vector<Mint> ans, tot, sub; vector<vector<pair<int, int>>> duss; int dfsSub(int j, int u, int p, int d) { duss[j].emplace_back(d, u); tot[d] += Q[u]; sub[d] += Q[u]; int ret = d; for (const int i : G[u]) { const int v = A[i] ^ B[i] ^ u; if (!del[v] && v != p) { chmax(ret, dfsSub(j, v, u, d + 1)); } } return ret; } void solveSubtree(int r) { #ifdef LOCAL cerr << "solveSubtree " << dfsDebug(r, -1) << endl; #endif vector<int> is; for (const int i : G[r]) { const int v = A[i] ^ B[i] ^ r; if (!del[v]) { is.push_back(i); } } const int len = is.size(); tot.assign(sz[r], 0); tot[0] += Q[r]; duss.assign(len + 1, {}); duss[len].emplace_back(0, r); int dMax = 0; for (int j = 0; j < len; ++j) { const int i = is[j]; const int v = A[i] ^ B[i] ^ r; sub.assign(sz[v] + 1, 0); const int d = dfsSub(j, v, r, 1); chmax(dMax, d); sub.resize(d + 1); vector<Mint> coef(2 * d + 1); for (int k = 0; k <= 2 * d; ++k) { coef[k] = inv[k + 1] * inv[k + 1]; } const auto res = middle(sub, coef); for (const auto &du : duss[j]) { ans[du.second] -= res[du.first]; } } tot.resize(dMax + 1); { vector<Mint> coef(2 * dMax + 1); for (int k = 0; k <= 2 * dMax; ++k) { coef[k] = inv[k + 1] * inv[k + 1]; } const auto res = middle(tot, coef); for (int j = 0; j <= len; ++j) for (const auto &du : duss[j]) { ans[du.second] += res[du.first]; } } } void solveRec(int u) { for (; ; ) { int vm = -1; for (const int i : G[u]) { const int v = A[i] ^ B[i] ^ u; if (!del[v]) { if (vm == -1 || sz[vm] < sz[v]) { vm = v; } } } if (vm == -1 || sz[u] >= 2 * sz[vm]) { solveSubtree(u); del[u] = true; for (const int i : G[u]) { const int v = A[i] ^ B[i] ^ u; if (!del[v]) { solveRec(v); } } break; } else { sz[u] -= sz[vm]; sz[vm] += sz[u]; u = vm; } } } void solveCentroidDecomp() { sz.assign(N, 0); del.assign(N, 0); dfsSz(0, -1); ans.assign(N, 0); solveRec(0); } int main() { prepare(); for (; ~scanf("%d", &N); ) { Q.resize(N); for (int u = 0; u < N; ++u) { scanf("%u", &Q[u].x); } A.resize(N - 1); B.resize(N - 1); for (int i = 0; i < N - 1; ++i) { scanf("%d%d", &A[i], &B[i]); --A[i]; --B[i]; } G.assign(N, {}); for (int i = 0; i < N - 1; ++i) { G[A[i]].push_back(i); G[B[i]].push_back(i); } solveCentroidDecomp(); for (int u = 0; u < N; ++u) { ans[u] *= fac[N] * fac[N]; } for (int u = 0; u < N; ++u) { printf("%u\n", ans[u].x); } } return 0; }