結果

問題 No.1833 Subway Planning
ユーザー milkcoffee
提出日時 2021-12-28 14:47:40
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 916 ms / 4,000 ms
コード長 9,226 bytes
コンパイル時間 4,814 ms
コンパイル使用メモリ 254,984 KB
実行使用メモリ 64,384 KB
最終ジャッジ日時 2024-10-02 07:19:57
合計ジャッジ時間 18,159 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 23
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#endif
using namespace std;
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#define ll long long
#define forin(in, n) \
for (ll i = 0; i < n; i++) \
cin >> in[i]
#define forout(out) \
for (ll i = 0; i < (ll)out.size(); i++) \
cout << out[i] << endl
#define rep(i, n) for (ll i = 0; i < n; ++i)
#define rep_up(i, a, n) for (ll i = a; i < n; ++i)
#define rep_down(i, a, n) for (ll i = a; i >= n; --i)
#define P pair<ll, ll>
#define pb push_back
#define all(v) v.begin(), v.end()
#define fi first
#define se second
#define vvvvll vector< vector <vector <vector<ll> > > >
#define vvvll vector< vector< vector<ll> > >
#define vvll vector< vector<ll> >
#define vll vector<ll>
#define pqll priority_queue<ll>
#define pqllg priority_queue<ll, vector<ll>, greater<ll>>
template<class T> inline void vin(vector<T>& v) { rep(i, v.size()) cin >> v.at(i); }
template <class T>
using V = vector<T>;
constexpr ll INF = (1ll << 60);
constexpr ll mod = 1000000007;
//constexpr ll mod = 998244353;
constexpr double pi = 3.14159265358979323846;
template <typename T>
inline bool chmax(T &a, T b)
{
if (a < b)
{
a = b;
return 1;
}
return 0;
}
template <typename T>
inline bool chmin(T &a, T b)
{
if (a > b)
{
a = b;
return 1;
}
return 0;
}
template <typename T>
void pt(T val)
{
cout << val << "\n";
}
template <typename T>
void pt_vll(vector<T> &v)
{
ll vs = v.size();
rep(i, vs)
{
cout << v[i];
if (i == vs - 1)
cout << "\n";
else
cout << " ";
}
}
ll mypow(ll a, ll n)
{
ll ret = 1;
if (n == 0)
return 1;
if (a == 0)
return 0;
rep(i, n)
{
if (ret > (ll)(9e18 + 10) / a)
return -1;
ret *= a;
}
return ret;
}
long long modpow(long long a, long long n, long long mod)
{
long long res = 1;
while (n > 0)
{
if (n & 1)
res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
long long modinv(long long a, long long m)
{
long long b = m, u = 1, v = 0;
while (b)
{
long long t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
u %= m;
if (u < 0)
u += m;
return u;
}
struct mint {
ll x;
constexpr mint(ll x = 0) noexcept : x((x % mod + mod) % mod) {}
constexpr mint& operator+=(const mint& a) noexcept {
if ((x += a.x) >= mod) x -= mod;
return *this;
}
constexpr mint& operator-=(const mint& a) noexcept {
if ((x += mod - a.x) >= mod) x -= mod;
return *this;
}
constexpr mint& operator*=(const mint& a) noexcept { (x *= a.x) %= mod; return *this; }
constexpr mint& operator/=(const mint& a) noexcept { return *this *= a.inv(); }
constexpr mint operator-() const noexcept { return mint(-x); }
constexpr mint operator+(const mint& a) const noexcept { return mint(*this) += a; }
constexpr mint operator-(const mint& a) const noexcept { return mint(*this) -= a; }
constexpr mint operator*(const mint& a) const noexcept { return mint(*this) *= a; }
constexpr mint operator/(const mint& a) const noexcept { return mint(*this) /= a; }
constexpr bool operator==(const mint& a) const noexcept { return x == a.x; }
constexpr bool operator!=(const mint& a) const noexcept { return x != a.x; }
constexpr mint pow(ll n) const {
if (n == 0) return 1;
mint res = pow(n >> 1);
res *= res;
if (n & 1) res *= *this;
return res;
}
constexpr mint inv() const { return pow(mod - 2); }
friend istream& operator>>(istream& is, mint& a) noexcept {
ll v; is >> v;
a = mint(v);
return is;
}
friend ostream& operator<<(ostream& os, const mint& a) noexcept {
return os << a.x;
}
};
struct UnionFind
{
vector<ll> par, size;
UnionFind(ll N) : par(N)
{ //
size.resize(N, 1);
for (ll i = 0; i < N; i++)
par[i] = i;
}
ll root(ll x)
{ //x
if (par[x] == x)
return x;
return par[x] = root(par[x]);
}
void unite(ll x, ll y)
{ //xy
ll rx = root(x);
ll ry = root(y);
if (rx == ry)
return; //
if (size[rx] > size[ry])
{
par[ry] = rx;
size[rx] += size[ry];
}
else
{
par[rx] = ry;
size[ry] += size[rx];
}
return;
}
bool same(ll x, ll y)
{ //2x,ytrue
ll rx = root(x);
ll ry = root(y);
return rx == ry;
}
ll treesize(ll x) { return size[root(x)]; }
};
const int MAX = 2010000;
long long fac[MAX], finv[MAX], inv[MAX];
//
void COMinit()
{
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for (ll i = 2; i < MAX; i++)
{
fac[i] = fac[i - 1] * i % mod;
inv[i] = mod - inv[mod % i] * (mod / i) % mod;
finv[i] = finv[i - 1] * inv[i] % mod;
}
}
//
long long COM(ll n, ll k)
{
if (n < k)
return 0;
if (n < 0 || k < 0)
return 0;
return fac[n] * (finv[k] * finv[n - k] % mod) % mod;
}
vector<ll> enum_div(ll n)
{ //
vector<ll> ret;
for (ll i = 1; i * i <= n; ++i)
{
if (n % i == 0)
{
ret.push_back(i);
if (i * i != n)
{
ret.push_back(n / i);
}
}
}
return ret;
}
void make_prime(vector<ll> &ret, ll n)
{ //
ll x = n;
for (ll i = 2; i * i <= x; i++)
{
while (n % i == 0)
{
n /= i;
ret.push_back(i);
}
}
if (n != 1)
{
ret.push_back(n);
}
return;
}
vector<bool> prime(1000010, true);
vector<ll> pri(1000010);
vector<bool> isprime(int N)
{ //
if (N >= 0)
prime[0] = false;
if (N >= 1)
prime[1] = false;
for (ll i = 2; i * i <= N; i++)
{
if (!prime[i])
{
continue;
}
for (ll j = i * i; j <= N; j += i)
{
if (prime[j])
pri[j] = i;
prime[j] = false;
}
}
return prime;
}
map<ll,ll> compression(vector<ll> v){
map<ll,ll> ret;
ll cnt = 0;
sort(v.begin(),v.end());
for(ll i=0; i<v.size(); i++){
if(!ret.count(v[i])){
ret[v[i]] = cnt;
cnt++;
}
}
return ret;
}
ll mydiv(ll x, ll y){ //(0)
if(y<0){
x=-x;
y=-y;
}
if(x<0){
return (x-y+1)/y;
}
else return x/y;
}
//: void make_prime(vector<ll> &ret, ll n)
// : vector<bool> isprime(int N)
//: vector<ll> enum_div(ll n)
struct Edge {
long long to;
long long cost;
};
using Graph = vector<vector<Edge> >;
multiset<ll> X,Y;
ll tmp=INF;
vll dist(200001,-1);
vll dis(200001,-1);
void dfs(Graph &G, ll v){
dist[v]=0;
for(auto e:G[v]){
if(dist[e.to]==0) continue;
X.insert(e.cost);
dfs(G,e.to);
}
}
void dfs2(Graph &G, ll v){
dis[v]=0;
ll x,y,z;
auto itr = X.end();
itr --; x = *itr;
itr = Y.begin(); y = *itr;
itr = Y.end(); itr --; z = *itr;
chmin(tmp,max(x,z-y));
for(auto e:G[v]){
if(dis[e.to]==0) continue;
X.erase(X.find(e.cost));
Y.insert(e.cost);
dfs2(G,e.to);
X.insert(e.cost);
Y.erase(Y.find(e.cost));
}
}
void solve(){
ll n, m, k, cnt = 0, sum = 0, ans = 0;
cin>>n;
ll ma=0;
if(n<2||n>200000){
pt(-1);
return;
}
Graph G(n);
UnionFind uf(n);
vll A(n-1);
vll B(n-1);
vll C(n-1);
rep(i,n-1){
ll a,b,c;
cin>>a>>b>>c;
if(a<1||a>n||b<1||b>n){
pt(-1);
return;
}
if(c<1||c>1000000000){
pt(-1);
return;
}
a--;b--;
if(uf.same(a,b)){
pt(-1);
return;
}
uf.unite(a,b);
A[i]=a;
B[i]=b;
C[i]=c;
if(chmax(ma,c)){
cnt=i;
}
}
rep(i,n-1){
if(cnt==i) continue;
G[A[i]].pb({B[i],C[i]});
G[B[i]].pb({A[i],C[i]});
}
Y.insert(C[cnt]);
X.insert(0);
dfs(G,A[cnt]);
dfs2(G,A[cnt]);
ans=tmp;
X.clear();
Y.clear();
Y.insert(C[cnt]);
X.insert(0);
tmp=INF;
dfs(G,B[cnt]);
dfs2(G,B[cnt]);
chmax(ans,tmp);
pt(ans);
}
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
//cout << fixed << setprecision(16);
//ll T;
//cin>>T;
//rep(ca,T)
solve();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0