結果
問題 | No.1857 Gacha Addiction |
ユーザー | Mitarushi |
提出日時 | 2021-12-30 22:46:56 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 5,700 ms / 6,000 ms |
コード長 | 2,653 bytes |
コンパイル時間 | 159 ms |
コンパイル使用メモリ | 82,048 KB |
実行使用メモリ | 265,852 KB |
最終ジャッジ日時 | 2024-07-01 22:02:53 |
合計ジャッジ時間 | 170,265 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 43 |
ソースコード
import collections mod = 998244353 def fft_inplace(a, w): n = len(a) m = n t = 1 while m >= 2: mh = m >> 1 for i in range(0, n, m): for s in range(mh): j, k = i+s, i+mh+s a[j], a[k] = (a[j]+a[k]) % mod, (a[j]-a[k])*w[s*t] % mod m = mh t *= 2 def ifft_inplace(a, w): n = len(a) m = 2 t = -(n >> 1) while m <= n: mh = m >> 1 for i in range(0, n, m): for s in range(mh): j, k = i+s, i+mh+s a[k] *= w[s*t] a[j], a[k] = (a[j]+a[k]) % mod, (a[j]-a[k]) % mod m <<= 1 t //= 2 n_inv = pow(n, mod-2, mod) for i in range(n): a[i] = a[i] * n_inv % mod def normal_convolution(a, b): n = max(len(a) + len(b) - 1, 1) c = [0] * n for i in range(len(a)): for j in range(len(b)): c[i+j] += a[i] * b[j] for i in range(n): c[i] %= mod return c def convolution(a, b): n2 = max(len(a) + len(b), 1) if len(a) * len(b) < 1 << 16: return normal_convolution(a, b) n = 1 << (n2-1).bit_length() a = a + [0] * (n-len(a)) b = b + [0] * (n-len(b)) w_root = pow(3, (mod-1)//n, mod) w = [1] * n for i in range(1, n): w[i] = w[i-1] * w_root % mod fft_inplace(a, w) fft_inplace(b, w) c = [i*j % mod for i, j in zip(a, b)] ifft_inplace(c, w) return c[:n2] class Poly: def __init__(Self, coeffs): Self.coeffs = coeffs def __add__(Self, other): n = max(len(Self.coeffs), len(other.coeffs)) result = [0] * n for idx, i in enumerate(Self.coeffs): result[idx] += i for idx, i in enumerate(other.coeffs): result[idx] += i result[idx] %= mod return Poly(result) def __mul__(Self, other): return Poly(convolution(Self.coeffs, other.coeffs)) class Fraction: def __init__(Self, num, den): Self.num = num Self.den = den def __add__(Self, other): return Fraction(Self.num * other.den + Self.den * other.num, Self.den * other.den) n, s = map(int, input().split()) s_inv = pow(s, mod-2, mod) p = [i * s_inv % mod for i in map(int, input().split())] fractions = collections.deque( Fraction(Poly([0, i ** 2 % mod]), Poly([1, i])) for i in p ) while len(fractions) > 1: fractions.append(fractions.popleft() + fractions.popleft()) ans = 0 factorial = 2 for i in range(1, n + 1): ans += fractions[0].num.coeffs[i] * factorial % mod factorial = factorial * (i + 2) % mod ans %= mod print(ans)