結果

問題 No.1857 Gacha Addiction
ユーザー MitarushiMitarushi
提出日時 2021-12-30 22:46:56
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 5,700 ms / 6,000 ms
コード長 2,653 bytes
コンパイル時間 159 ms
コンパイル使用メモリ 82,048 KB
実行使用メモリ 265,852 KB
最終ジャッジ日時 2024-07-01 22:02:53
合計ジャッジ時間 170,265 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 46 ms
54,272 KB
testcase_01 AC 45 ms
54,144 KB
testcase_02 AC 45 ms
54,528 KB
testcase_03 AC 45 ms
54,656 KB
testcase_04 AC 214 ms
79,152 KB
testcase_05 AC 218 ms
79,280 KB
testcase_06 AC 222 ms
79,140 KB
testcase_07 AC 220 ms
79,420 KB
testcase_08 AC 218 ms
79,260 KB
testcase_09 AC 1,802 ms
164,824 KB
testcase_10 AC 1,822 ms
164,628 KB
testcase_11 AC 1,782 ms
164,276 KB
testcase_12 AC 1,798 ms
165,072 KB
testcase_13 AC 1,789 ms
165,412 KB
testcase_14 AC 5,503 ms
263,860 KB
testcase_15 AC 5,513 ms
265,212 KB
testcase_16 AC 5,512 ms
262,892 KB
testcase_17 AC 5,519 ms
265,216 KB
testcase_18 AC 5,557 ms
265,704 KB
testcase_19 AC 5,601 ms
263,260 KB
testcase_20 AC 5,582 ms
265,048 KB
testcase_21 AC 5,587 ms
263,200 KB
testcase_22 AC 5,584 ms
264,644 KB
testcase_23 AC 5,700 ms
262,624 KB
testcase_24 AC 5,597 ms
264,948 KB
testcase_25 AC 5,577 ms
265,852 KB
testcase_26 AC 5,571 ms
263,756 KB
testcase_27 AC 5,610 ms
264,548 KB
testcase_28 AC 5,617 ms
263,972 KB
testcase_29 AC 5,613 ms
264,760 KB
testcase_30 AC 5,568 ms
263,896 KB
testcase_31 AC 5,610 ms
263,888 KB
testcase_32 AC 5,684 ms
263,944 KB
testcase_33 AC 5,610 ms
264,316 KB
testcase_34 AC 5,554 ms
264,064 KB
testcase_35 AC 5,571 ms
264,928 KB
testcase_36 AC 5,599 ms
264,828 KB
testcase_37 AC 5,566 ms
262,336 KB
testcase_38 AC 5,585 ms
264,656 KB
testcase_39 AC 1,985 ms
172,780 KB
testcase_40 AC 2,164 ms
181,220 KB
testcase_41 AC 2,581 ms
216,152 KB
testcase_42 AC 657 ms
101,188 KB
testcase_43 AC 4,946 ms
260,984 KB
testcase_44 AC 5,468 ms
264,072 KB
testcase_45 AC 44 ms
54,364 KB
testcase_46 AC 45 ms
54,400 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import collections

mod = 998244353


def fft_inplace(a, w):
    n = len(a)
    m = n
    t = 1
    while m >= 2:
        mh = m >> 1
        for i in range(0, n, m):
            for s in range(mh):
                j, k = i+s, i+mh+s
                a[j], a[k] = (a[j]+a[k]) % mod, (a[j]-a[k])*w[s*t] % mod
        m = mh
        t *= 2


def ifft_inplace(a, w):
    n = len(a)
    m = 2
    t = -(n >> 1)
    while m <= n:
        mh = m >> 1
        for i in range(0, n, m):
            for s in range(mh):
                j, k = i+s, i+mh+s
                a[k] *= w[s*t]
                a[j], a[k] = (a[j]+a[k]) % mod, (a[j]-a[k]) % mod
        m <<= 1
        t //= 2
    n_inv = pow(n, mod-2, mod)
    for i in range(n):
        a[i] = a[i] * n_inv % mod


def normal_convolution(a, b):
    n = max(len(a) + len(b) - 1, 1)
    c = [0] * n
    for i in range(len(a)):
        for j in range(len(b)):
            c[i+j] += a[i] * b[j]

    for i in range(n):
        c[i] %= mod
    return c


def convolution(a, b):
    n2 = max(len(a) + len(b), 1)

    if len(a) * len(b) < 1 << 16:
        return normal_convolution(a, b)

    n = 1 << (n2-1).bit_length()
    a = a + [0] * (n-len(a))
    b = b + [0] * (n-len(b))

    w_root = pow(3, (mod-1)//n, mod)
    w = [1] * n
    for i in range(1, n):
        w[i] = w[i-1] * w_root % mod

    fft_inplace(a, w)
    fft_inplace(b, w)
    c = [i*j % mod for i, j in zip(a, b)]
    ifft_inplace(c, w)
    return c[:n2]


class Poly:
    def __init__(Self, coeffs):
        Self.coeffs = coeffs

    def __add__(Self, other):
        n = max(len(Self.coeffs), len(other.coeffs))
        result = [0] * n
        for idx, i in enumerate(Self.coeffs):
            result[idx] += i
        for idx, i in enumerate(other.coeffs):
            result[idx] += i
            result[idx] %= mod
        return Poly(result)

    def __mul__(Self, other):
        return Poly(convolution(Self.coeffs, other.coeffs))


class Fraction:
    def __init__(Self, num, den):
        Self.num = num
        Self.den = den

    def __add__(Self, other):
        return Fraction(Self.num * other.den + Self.den * other.num, Self.den * other.den)


n, s = map(int, input().split())
s_inv = pow(s, mod-2, mod)
p = [i * s_inv % mod for i in map(int, input().split())]

fractions = collections.deque(
    Fraction(Poly([0, i ** 2 % mod]), Poly([1, i])) for i in p
)

while len(fractions) > 1:
    fractions.append(fractions.popleft() + fractions.popleft())

ans = 0
factorial = 2
for i in range(1, n + 1):
    ans += fractions[0].num.coeffs[i] * factorial % mod
    factorial = factorial * (i + 2) % mod
    ans %= mod

print(ans)

0