結果
問題 | No.1857 Gacha Addiction |
ユーザー | Mitarushi |
提出日時 | 2021-12-31 22:11:53 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 5,059 ms / 6,000 ms |
コード長 | 2,653 bytes |
コンパイル時間 | 299 ms |
コンパイル使用メモリ | 81,792 KB |
実行使用メモリ | 262,492 KB |
最終ジャッジ日時 | 2024-07-01 21:50:46 |
合計ジャッジ時間 | 152,342 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 44 ms
54,016 KB |
testcase_01 | AC | 49 ms
54,400 KB |
testcase_02 | AC | 46 ms
54,272 KB |
testcase_03 | AC | 46 ms
54,400 KB |
testcase_04 | AC | 205 ms
79,144 KB |
testcase_05 | AC | 191 ms
78,896 KB |
testcase_06 | AC | 192 ms
79,264 KB |
testcase_07 | AC | 193 ms
79,300 KB |
testcase_08 | AC | 192 ms
79,136 KB |
testcase_09 | AC | 1,530 ms
165,664 KB |
testcase_10 | AC | 1,534 ms
165,428 KB |
testcase_11 | AC | 1,542 ms
166,040 KB |
testcase_12 | AC | 1,530 ms
164,756 KB |
testcase_13 | AC | 1,528 ms
166,144 KB |
testcase_14 | AC | 4,973 ms
261,888 KB |
testcase_15 | AC | 4,992 ms
262,492 KB |
testcase_16 | AC | 4,983 ms
261,872 KB |
testcase_17 | AC | 4,965 ms
262,012 KB |
testcase_18 | AC | 4,983 ms
261,668 KB |
testcase_19 | AC | 4,971 ms
261,524 KB |
testcase_20 | AC | 4,977 ms
261,564 KB |
testcase_21 | AC | 4,974 ms
261,420 KB |
testcase_22 | AC | 4,982 ms
261,436 KB |
testcase_23 | AC | 4,981 ms
261,684 KB |
testcase_24 | AC | 5,011 ms
261,420 KB |
testcase_25 | AC | 5,015 ms
261,544 KB |
testcase_26 | AC | 4,968 ms
261,400 KB |
testcase_27 | AC | 4,974 ms
261,472 KB |
testcase_28 | AC | 4,994 ms
261,300 KB |
testcase_29 | AC | 4,997 ms
261,940 KB |
testcase_30 | AC | 5,021 ms
261,300 KB |
testcase_31 | AC | 5,012 ms
261,784 KB |
testcase_32 | AC | 4,999 ms
261,668 KB |
testcase_33 | AC | 5,011 ms
261,396 KB |
testcase_34 | AC | 4,988 ms
261,272 KB |
testcase_35 | AC | 5,002 ms
261,940 KB |
testcase_36 | AC | 5,005 ms
261,316 KB |
testcase_37 | AC | 5,059 ms
261,520 KB |
testcase_38 | AC | 4,987 ms
261,568 KB |
testcase_39 | AC | 1,717 ms
178,608 KB |
testcase_40 | AC | 1,781 ms
180,612 KB |
testcase_41 | AC | 2,325 ms
220,116 KB |
testcase_42 | AC | 565 ms
101,952 KB |
testcase_43 | AC | 4,504 ms
259,756 KB |
testcase_44 | AC | 4,979 ms
260,308 KB |
testcase_45 | AC | 44 ms
54,400 KB |
testcase_46 | AC | 45 ms
54,400 KB |
ソースコード
import collections mod = 998244353 def fft_inplace(a, w): n = len(a) m = n t = 1 while m >= 2: mh = m >> 1 for i in range(0, n, m): for s in range(mh): j, k = i+s, i+mh+s a[j], a[k] = (a[j]+a[k]) % mod, (a[j]-a[k])*w[s*t] % mod m = mh t *= 2 def ifft_inplace(a, w): n = len(a) m = 2 t = -(n >> 1) while m <= n: mh = m >> 1 for i in range(0, n, m): for s in range(mh): j, k = i+s, i+mh+s a[k] *= w[s*t] a[j], a[k] = (a[j]+a[k]) % mod, (a[j]-a[k]) % mod m <<= 1 t //= 2 n_inv = pow(n, mod-2, mod) for i in range(n): a[i] = a[i] * n_inv % mod def normal_convolution(a, b): n = max(len(a) + len(b) - 1, 1) c = [0] * n for i in range(len(a)): for j in range(len(b)): c[i+j] += a[i] * b[j] for i in range(n): c[i] %= mod return c def convolution(a, b): n2 = max(len(a) + len(b), 1) if len(a) * len(b) < 1 << 10: return normal_convolution(a, b) n = 1 << (n2-1).bit_length() a = a + [0] * (n-len(a)) b = b + [0] * (n-len(b)) w_root = pow(3, (mod-1)//n, mod) w = [1] * n for i in range(1, n): w[i] = w[i-1] * w_root % mod fft_inplace(a, w) fft_inplace(b, w) c = [i*j % mod for i, j in zip(a, b)] ifft_inplace(c, w) return c[:n2] class Poly: def __init__(Self, coeffs): Self.coeffs = coeffs def __add__(Self, other): n = max(len(Self.coeffs), len(other.coeffs)) result = [0] * n for idx, i in enumerate(Self.coeffs): result[idx] += i for idx, i in enumerate(other.coeffs): result[idx] += i result[idx] %= mod return Poly(result) def __mul__(Self, other): return Poly(convolution(Self.coeffs, other.coeffs)) class Fraction: def __init__(Self, num, den): Self.num = num Self.den = den def __add__(Self, other): return Fraction(Self.num * other.den + Self.den * other.num, Self.den * other.den) n, s = map(int, input().split()) s_inv = pow(s, mod-2, mod) p = [i * s_inv % mod for i in map(int, input().split())] fractions = collections.deque( Fraction(Poly([0, i ** 2 % mod]), Poly([1, i])) for i in p ) while len(fractions) > 1: fractions.append(fractions.popleft() + fractions.popleft()) ans = 0 factorial = 2 for i in range(1, n + 1): ans += fractions[0].num.coeffs[i] * factorial % mod factorial = factorial * (i + 2) % mod ans %= mod print(ans)