結果

問題 No.1857 Gacha Addiction
ユーザー MitarushiMitarushi
提出日時 2021-12-31 22:11:53
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 5,059 ms / 6,000 ms
コード長 2,653 bytes
コンパイル時間 299 ms
コンパイル使用メモリ 81,792 KB
実行使用メモリ 262,492 KB
最終ジャッジ日時 2024-07-01 21:50:46
合計ジャッジ時間 152,342 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 44 ms
54,016 KB
testcase_01 AC 49 ms
54,400 KB
testcase_02 AC 46 ms
54,272 KB
testcase_03 AC 46 ms
54,400 KB
testcase_04 AC 205 ms
79,144 KB
testcase_05 AC 191 ms
78,896 KB
testcase_06 AC 192 ms
79,264 KB
testcase_07 AC 193 ms
79,300 KB
testcase_08 AC 192 ms
79,136 KB
testcase_09 AC 1,530 ms
165,664 KB
testcase_10 AC 1,534 ms
165,428 KB
testcase_11 AC 1,542 ms
166,040 KB
testcase_12 AC 1,530 ms
164,756 KB
testcase_13 AC 1,528 ms
166,144 KB
testcase_14 AC 4,973 ms
261,888 KB
testcase_15 AC 4,992 ms
262,492 KB
testcase_16 AC 4,983 ms
261,872 KB
testcase_17 AC 4,965 ms
262,012 KB
testcase_18 AC 4,983 ms
261,668 KB
testcase_19 AC 4,971 ms
261,524 KB
testcase_20 AC 4,977 ms
261,564 KB
testcase_21 AC 4,974 ms
261,420 KB
testcase_22 AC 4,982 ms
261,436 KB
testcase_23 AC 4,981 ms
261,684 KB
testcase_24 AC 5,011 ms
261,420 KB
testcase_25 AC 5,015 ms
261,544 KB
testcase_26 AC 4,968 ms
261,400 KB
testcase_27 AC 4,974 ms
261,472 KB
testcase_28 AC 4,994 ms
261,300 KB
testcase_29 AC 4,997 ms
261,940 KB
testcase_30 AC 5,021 ms
261,300 KB
testcase_31 AC 5,012 ms
261,784 KB
testcase_32 AC 4,999 ms
261,668 KB
testcase_33 AC 5,011 ms
261,396 KB
testcase_34 AC 4,988 ms
261,272 KB
testcase_35 AC 5,002 ms
261,940 KB
testcase_36 AC 5,005 ms
261,316 KB
testcase_37 AC 5,059 ms
261,520 KB
testcase_38 AC 4,987 ms
261,568 KB
testcase_39 AC 1,717 ms
178,608 KB
testcase_40 AC 1,781 ms
180,612 KB
testcase_41 AC 2,325 ms
220,116 KB
testcase_42 AC 565 ms
101,952 KB
testcase_43 AC 4,504 ms
259,756 KB
testcase_44 AC 4,979 ms
260,308 KB
testcase_45 AC 44 ms
54,400 KB
testcase_46 AC 45 ms
54,400 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import collections

mod = 998244353


def fft_inplace(a, w):
    n = len(a)
    m = n
    t = 1
    while m >= 2:
        mh = m >> 1
        for i in range(0, n, m):
            for s in range(mh):
                j, k = i+s, i+mh+s
                a[j], a[k] = (a[j]+a[k]) % mod, (a[j]-a[k])*w[s*t] % mod
        m = mh
        t *= 2


def ifft_inplace(a, w):
    n = len(a)
    m = 2
    t = -(n >> 1)
    while m <= n:
        mh = m >> 1
        for i in range(0, n, m):
            for s in range(mh):
                j, k = i+s, i+mh+s
                a[k] *= w[s*t]
                a[j], a[k] = (a[j]+a[k]) % mod, (a[j]-a[k]) % mod
        m <<= 1
        t //= 2
    n_inv = pow(n, mod-2, mod)
    for i in range(n):
        a[i] = a[i] * n_inv % mod


def normal_convolution(a, b):
    n = max(len(a) + len(b) - 1, 1)
    c = [0] * n
    for i in range(len(a)):
        for j in range(len(b)):
            c[i+j] += a[i] * b[j]

    for i in range(n):
        c[i] %= mod
    return c


def convolution(a, b):
    n2 = max(len(a) + len(b), 1)

    if len(a) * len(b) < 1 << 10:
        return normal_convolution(a, b)

    n = 1 << (n2-1).bit_length()
    a = a + [0] * (n-len(a))
    b = b + [0] * (n-len(b))

    w_root = pow(3, (mod-1)//n, mod)
    w = [1] * n
    for i in range(1, n):
        w[i] = w[i-1] * w_root % mod

    fft_inplace(a, w)
    fft_inplace(b, w)
    c = [i*j % mod for i, j in zip(a, b)]
    ifft_inplace(c, w)
    return c[:n2]


class Poly:
    def __init__(Self, coeffs):
        Self.coeffs = coeffs

    def __add__(Self, other):
        n = max(len(Self.coeffs), len(other.coeffs))
        result = [0] * n
        for idx, i in enumerate(Self.coeffs):
            result[idx] += i
        for idx, i in enumerate(other.coeffs):
            result[idx] += i
            result[idx] %= mod
        return Poly(result)

    def __mul__(Self, other):
        return Poly(convolution(Self.coeffs, other.coeffs))


class Fraction:
    def __init__(Self, num, den):
        Self.num = num
        Self.den = den

    def __add__(Self, other):
        return Fraction(Self.num * other.den + Self.den * other.num, Self.den * other.den)


n, s = map(int, input().split())
s_inv = pow(s, mod-2, mod)
p = [i * s_inv % mod for i in map(int, input().split())]

fractions = collections.deque(
    Fraction(Poly([0, i ** 2 % mod]), Poly([1, i])) for i in p
)

while len(fractions) > 1:
    fractions.append(fractions.popleft() + fractions.popleft())

ans = 0
factorial = 2
for i in range(1, n + 1):
    ans += fractions[0].num.coeffs[i] * factorial % mod
    factorial = factorial * (i + 2) % mod
    ans %= mod

print(ans)

0